
1

TRIMMER: An Automated System For
Configuration-based Software Debloating

Aatira Anum Ahmad, Abdul Rafae Noor, Hashim Sharif, Usama Hameed, Shoaib Asif, Mubashir Anwar,
Ashish Gehani, Fareed Zaffar, Junaid Haroon Siddiqui

Abstract—Software bloat has negative implications for security, reliability, and performance. To counter bloat, we propose TRIMMER, a
static analysis-based system for pruning unused functionality. TRIMMER removes code that is unused with respect to user-provided
command-line arguments and application-specific configuration files. TRIMMER uses concrete memory tracking and a custom
inter-procedural constant propagation analysis that facilitates dead code elimination. Our system supports both context-sensitive and
context-insensitive constant propagation. We show that context-sensitive constant propagation is important for effective software
pruning in most applications. We introduce sparse constant propagation that performs constant propagation only for
configuration-hosting variables and show that it performs better (higher code size reductions) compared to constant propagation for all
program variables. Overall, our results show that TRIMMER reduces binary sizes for real-world programs with reasonable analysis
times. Across 20 evaluated programs, we observe a mean binary size reduction of 22.7% and a maximum reduction of 62.7%. For 5
programs, we observe performance speedups ranging from 5% to 53%. Moreover, we show that winnowing software applications can
reduce the program attack surface by removing code that contains exploitable vulnerabilities. We find that debloating using TRIMMER

removes CVEs in 4 applications.

Index Terms—Compilers, Partial evaluation, Program analysis

F

1 INTRODUCTION

T O cater to a growing number of use cases, application and
system developers are driven towards extending software

functionality. However, usually only a small subset of all sup-
ported functionality is used in a specific deployment. The unused
features can be referred to as code bloat. This increases the
probability of residual bugs, unexpected failures, and exploitable
vulnerabilities [1], [2]. Moreover, code bloat also has negative
implications for resource usage. Given the trend towards edge
computing (with devices having limited compute and memory),
reducing bloat to improve performance and reduce resource con-
sumption is an important goal [3], [4].

To counter the one-size-fits-all approach to software devel-
opment, multiple prior studies [5], [6], [7], [8], [9], [10] have
proposed techniques for software specialization. A target pro-
gram, library, or software stack is customized with respect to
constant parameter settings. This allows for removing unused
code, typically through static analysis. Code debloating via soft-
ware specialization can improve reliability and security since
removing unused features reduces the space of possible behaviors
of a program. Moreover, since software specialization employs
constant folding, it simplifies program expressions and provides
performance improvements [5], [6].

Software debloating is regaining research interest, with widely
varied proposals using compiler-, runtime-, and machine learning-
based techniques. Malecha et al. [8] created OCCAM, a partial
evaluation tool that specializes programs with respect to pre-
specified constant command-line values at compile time. OCCAM
relies on standard compiler optimizations for constant propagation
and code simplification. We show that standard LLVM analyses
are insufficient for effective specialization. Quach et al. [11]
developed Piece-wise to zero unused code in dynamically linked
libraries at load time, at the cost of larger on-disk binaries (addi-
tion of a dependency graph) with no reduction in memory usage.

Chisel [12] uses delta debugging with reinforcement learning to
debloat programs, given a high-level specification of features to
be retained. For each application to be debloated, a set of detailed
test scripts is constructed to invoke the code that corresponds to
the functionality that is intended to be preserved. This approach
places a significant burden on the user, making it error-prone. In
particular, it requires users to understand details of the application
code [13].

1.1 TRIMMER

TRIMMER is a system that automatically specializes programs
given only high-level user specifications. TRIMMER is the first
code debloating system that provides (i) a simple mechanism for
providing specialization specifications, in the form of application
command-line inputs and configuration file contents; the speci-
fication does not require any detailed understanding of program
code, thus creating a practical path to adoption, and (ii) effective
specialization in reasonable analysis times, achieved by limiting
expensive context-sensitive constant propagation to the program
slices that are is most likely to include code conditional on
configuration parameters.

The TRIMMER compilation pipeline includes both novel and
traditional analyses that enable code pruning by incorporating
external inputs as program constants and propagating constants
through program control- and data-flow. TRIMMER includes the
following compiler transforms: (i) a compiler pass to create a pro-
gram variant that is specialized for constant input values (passed
through command-line flags or read through configuration files),
(ii) an analysis pass to identify configuration-hosting variables,
(iii) constant propagation for program paths that are tainted by the
detected configuration-hosting variables, and (iv) a custom loop
unrolling transform that is tailored to facilitate constant propa-
gation. Finally, TRIMMER uses standard compiler transforms for

2

further simplifying program expressions. TRIMMER supports both
context-insensitive and context-sensitive constant propagation for
configuration-hosting memory objects. For most benchmarks, we
find that context-sensitive analysis provides greater code size
reductions.

Recent work has argued that removing unwanted code can
improve software security [11], [12]. Reducing the space of
possible behaviors by a program can eliminate execution traces
where vulnerabilities are exploited. Our evaluation shows that
eliminating features via program specialization can remove Com-
mon Vulnerabilities and Exposures (CVEs). Proactively pruning
unused code helps reduce the maintenance overhead associated
with software patches and upgrades that are needed when a
vulnerability is present in software features that are rarely used.

1.2 Contributions

Specifically, we make the following contributions:

• We define and use sparse context-sensitive constant propagation
that limits analysis to the program slices that store to and
read from configuration-hosting memory objects. Reducing the
number of program variables considered for constant folding
limits the amount of function cloning needed during partial
evaluation.

• We show that context-sensitive analysis for all program vari-
ables usually increases code size due to the excessive creation
of function clones during partial evaluation.

• We develop an analysis to automatically identify and annotate
configuration-hosting program variables that potentially con-
tain values read from configuration files and/or command-line
inputs.

• We develop an inter-procedural file input specialization trans-
form that lifts content from files into static values in code that
are propagated by our custom constant propagation pass. Our
evaluation shows that TRIMMER can effectively specialize real-
world applications with respect to their configuration files.

• Our experiments demonstrate:
Smaller binary sizes: For 20 evaluated programs, we observe
a mean binary size reduction of 22.7% and a maximum re-
duction of 62.7%. 6 applications are specialized with respect
to configuration files, and 14 are specialized for command-line
arguments. In all cases, we select configurations that represent
realistic usage scenarios. TRIMMER provides higher code size
reduction compared to the static analysis of OCCAM, a similar
tool for partial evaluation. Across our evaluated benchmarks,
OCCAM provides an average code reduction of 8.6%.
Reasonable analysis times: We show that our sparse constant
propagation approach has reasonable overhead in terms of both
analysis time and peak memory usage. Overall, we observed
a mean analysis time of 12 seconds and a maximum of 20
minutes. The highest peak memory usage observed across our
benchmarks was 8.7GB (objdump).
Improved Performance: For 5 (out of 20) programs, we
observe lower execution times ranging from 5% to 53%.
Reduced security vulnerabilities: For 4 evaluated applications
with documented CVEs (Common Vulnerabilities and Expo-
sures), debloating commonly unused features removed a total
of 5 vulnerabilities.

This journal submission is an extended version of the con-
ference paper titled “TRIMMER: Application Specialization for

Code Debloating” [14] published in the 33rd IEEE/ACM Inter-
national Conference on Automated Software Engineering. The
extensions to our earlier work include:
• Proposal and evaluation of sparse context-sensitive constant

propagation. We add support for automatically annotating
configuration-hosting variables,which is used to guide the
sparse context-sensitive constant propagation.

• Support for specializing programs with respect to application-
specific configuration files. The conference version of TRIM-
MER only supported specialization via command-line inputs.

• A section on “Attack Surface Reduction” that shows that
application-specialization can remove known vulnerabilities
(CVEs) in commonly used programs.

• New performance evaluation that shows that specialization can
improve application performance (lower execution times).

1.3 Motivation for Code Specialization

Though modern software stacks and applications support a number
of useful features, much functionality is rarely used [15]. More-
over, different users and deployment contexts are likely to exercise
different non-overlapping sets of features. For instance, a DNS
proxy server may allow users to make a choice between using
TCP or UDP communication; it is likely that one or the other will
be better suited to a particular usage scenario. In other instances,
programs have a core of frequently used functionality along with
auxiliary features that are less likely to be used. For instance, while
the primary purpose of a webserver is to handle remote requests
for content, it may include support for various application pro-
tocols and differing levels of logging, among other configurable
options; such features may not be changed in practice.

Towards the goal of customizing programs with respect to their
usage scenarios, one approach taken by developers (especially
in the embedded systems space) is to re-implement software to
create light weight counterparts of existing programs. One relevant
example is the BusyBox software suite that includes several Unix
utilities, each of which is a stripped-down version of its full-
featured original counterpart. Such manual code customization
requires months and years of development overhead for mid-
to large-sized programs. TRIMMER aims to provide an easier
and more cost-effective alternative that provides developers with
an easy to use interface for specifying the deployment context
via configuration files and constant command-line inputs. Code
debloating via application specialization has two significant ad-
vantages:

Improving Resource Usage. TRIMMER can reduce the stor-
age footprint and in some cases program execution times. While
the code size footprint is a secondary concern in server systems
with large disks, it is a significant challenge in embedded and
IoT devices that contain limited flash memory (as secondary
storage) [16]. Code specialization involves propagating configu-
ration constants, which in turn facilitates compiler optimizations,
such as constant folding of program expressions and strength
reduction, among others. These optimizations collectively improve
performance, with a more noticeable impact when the code sim-
plification happens to be on a hot path of execution, such as a
frequently run loop.

Reducing Program Attack Surface. Vulnerabilities in unused
code can become active points for code reuse exploits by malicious
agents. Since debloating removes unused code from the target
binary, it can reduce the attack surface. Further, by specializing

3

away some control flow paths, the pruning can also eliminate
access to exploitable vulnerabilities. Code debloating is not an
alternative to existing defenses for code reuse attacks (and related
exploits), but has the benefit of reducing the amount of code that
needs protection by restricting the application to the specific usage
scenario. From a system administrator’s perspective, this translates
into benefits in code maintainability. For instance, a smaller code
footprint with fewer features does not require applying security
patches for functionality that has been pruned from the program
binary.

2 SYSTEM WORKFLOW

TRIMMER’s workflow is illustrated in Figure 1. The input to
the system is a manifest file that includes: (i) user-defined static
configuration data, and (ii) the path to an LLVM intermediate
representation (IR) version of the program to be debloated. The
user-defined static configuration data defines the usage context of
the application for a given deployment, which includes the appli-
cation’s command-line arguments and paths to fixed configuration
files (if any). TRIMMER specializes the target application modules
with respect to this usage context and generates a specialized
binary executable.

TRIMMER is composed of five primary compiler transforms:
(i) configuration annotations, (ii) entry-point specialization, (iii)
custom loop unrolling, (iv) file input/output (I/O) specialization,
and (v) custom constant propagation. The configuration anno-
tations pass, (sparse) constant propagation for memory objects,
and file I/O specialization transform are new analyses that we
have developed as part of this work. Entry-point specialization
is a previously employed technique for simplifying the main
program function with respect to constant inputs (i.e., command-
line arguments). Loop unrolling was also an existing transform;
we modify it to facilitate constant folding.

The first pass in the compilation sequence is configuration
annotations. It identifies program variables and memory objects
that may host parameters read from configuration files and/or
program inputs. It is important to identify configuration-hosting
objects. These values must be aggressively propagated for effec-
tive specialization. The alternative is to propagate all possible
variables. However, this can significantly increase code size as
it may result in indiscriminate function cloning (function clone
created for each unique calling context).

The entry-point specialization support incorporates user-
defined static arguments into the top-level function of the target
program. This, in turn, facilitates simplifying program expressions
dependent on these configuration constants. The functionality is
described in more detail in Section 2.2.

Next, a custom pass aggressively performs loop unrolling to
aid later optimizations. We observe that improved loop unrolling
is necessary to facilitate effective inter-procedural constant propa-
gation. Details are discussed in Section 2.3.

To simplify applications that are configured at runtime via
external files, we develop a file specialization transform, which
evaluates file I/O library calls. The pass lifts the contents of static
files (specified in a manifest) into program-level constants. Details
are provided in Section 2.4.

Our custom sparse context-sensitive constant propagation
analysis is designed to judiciously move static values through the
program’s call graph. More details are provided in Section 2.5.

Finally, standard compiler transforms (in LLVM) are leveraged
to optimize program expressions that consume constant values.

2.1 Configuration Annotations

The configuration annotations analysis identifies program vari-
ables that host configuration data values. We refer to these as
configuration-hosting objects. This LLVM pass directs our custom
(inter-procedural) sparse context-sensitive constant propagation
pass, which operates on the program slices that load or update
configuration-hosting objects. The approach has two benefits: (i)
it reduces analysis times by directing the analyses to execute
on a subset of program paths, (ii) it avoids partially evaluating
program functions that do not facilitate constant propagation. The
latter eliminates unnecessary function clones that could otherwise
increase code size.

We use a static analysis pass to track values that are directly or
indirectly derived from the input configuration values (to be used
for specialization). The goal of the analysis is to identify program
variables that are tainted by the configuration data that is lifted into
the program. The inter-procedural analysis propagates the taint,
considering both data-flow and control-flow dependencies. The
pass uses a pre-computed static value-flow graph that captures
data-flow facts across a program’s control flow. The graph is
constructed using SVF [17], an existing framework for value-
flow analysis. The resulting graph is then traversed to identify all
objects that have been tainted by the configuration. Note that the
source of this information includes both command-line arguments
as well as data read from configuration files.

Algorithm 1: Algorithm for Configuration Annotations
1 Function addConfigurationAnnotations(VFG)
2 TaintSet =: [argv] ;
3 WorkList =: [argv] ;
4 repeat
5 C =: popFromList(WorkList) ;
6 ValueFlowList =: VFG.getValueFlowList(C) ;
7 repeat
8 V =: ValueFlowList.getValue() ;
9 if VFG.MemFlowSrc(V) then

10 W =: VFG.MemFlowDst(V);
11 TaintSet.addToList(W) ;
12 WorkList.addToList(W) ;
13 if W is a store instruction value then
14 S =: getStoreDestination(W) ;
15 TaintSet.addToList(S) ;
16 WorkList.addToList(S) ;
17 end
18 if W is a call instruction to an external function F

then
19 S =: getAllPointerParameters(F) ;
20 TaintSet.addToList(S) ;
21 WorkList.addToList(S) ;
22 end
23 if W is an internal function (F) call then
24 S =: getCorrespondingFormalParameter(F) ;
25 TaintSet.addToList(S) ;
26 WorkList.addToList(S) ;
27 end
28 if W is a branch instruction with value as

condition then
29 S =: getVariablesInSuccessorBlocks(W) ;
30 TaintSet.addToList(S) ;
31 WorkList.addToList(S) ;
32 end
33 end
34 until not isEmpty(ValueFlowList);
35 until not isEmpty(WorkList);
36 annotateSites(TaintSet) ;

Algorithm 1 outlines the configuration annotations analysis.
The function addConfigurationAnnotations takes as in-
put the target program’s value-flow graph VFG (that is constructed
using the SVF framework). The Worklist (of program variables
to traverse from) and TaintSet (of affected program variables)

4

Configuration

Annotations
Entry-point

Specialization

Loop

Unrolling

File I/O

Specialization

Constant

Propagation

Manifest File

Specialized

Binary

Trimmer

Standard

Optimizations Linker

Application

in LLVM IR

Fig. 1: TRIMMER system workflow.

is initialized with the program inputs array (which is argv in
C/C++ programs). The outer loop (at Line 4) traverses over im-
mediate outgoing value-flows of values in WorkList. The inner
loop inspects each outgoing value-flow. The following actions are
performed with respect to the type of value-flow:

• If the outgoing value-flow is a store instruction, the destination
of the store is marked tainted.

• If the outgoing value-flow is an internal function call, the
corresponding function formal parameter is marked tainted.

• If the value-flow is to an external function call, all parameters
to the routine are marked tainted since it may include arbitrary
store instructions that affect the corresponding memory loca-
tions (which cannot be reasoned about).

• If the outgoing value-flow is a branch instruction, the values in
the successor blocks are marked tainted.

At analysis completion, the WorkList is empty, and
TaintSet is populated with the variables that are tainted by
the static configuration values.

Figure 2 shows the order in which the configuration annota-
tions pass traverses the value-flow graph and marks the tainted
values. The numbering adjacent to the instructions (e.g., (1), (2))
denotes the order in which the value-flow graph is traversed. Note
that the examples are shown in C syntax (for readability) but actual
transformations are applied on LLVM IR modules.

First, the WorkList is initialized with command-line input
(argv in C/C++). Since there is a value-flow edge from argv to
file_path, it is added to WorkList and TaintSet. Next,
there is an inter-procedural edge from file_path in main to
the file_path formal parameter of function parse_config.
Further, there is a value-flow edge from file_path to the
fopen function call; hence, the file pointer fp is tainted (and
added to WorkList). fp flows to the fgets call, marking str
as tainted. Eventually, the configuration-hosting variable config
is tainted since it is accessed (stored to) in the basic blocks that
are conditional on the value of str.

2.2 Entry-point Specialization

Our entry-point specialization transform leverages existing partial
evaluation concepts [18], [19]. The transform specializes the
program entry point with respect to input arguments specified in
an accompanying user-provided manifest file. Later, our custom
constant propagation pass uses this knowledge of this static data
to simplify program expressions, facilitating dead code removal.

Algorithm 2 shows the algorithm for the entry-point special-
ization transform. The pass reads static program parameters from
the manifest file. For each concretely-specified argument, all uses
are replaced by the known value. Users can also mark a subset
of arguments as dynamic (the values for these can be provided at
runtime).

struct Config* config; //(4)

void parse_string(char* str){

if(strcmp(str, "disable_logging") == 0)

config->logging_enabled = false;

if(strcmp(str, "disable_plugins") == 0)

config->plugins_enabled = false;

}

void parse_config(char * file_path){

char str[100]; //(3)

FILE* fp = fopen(file_path , "r"); //(2)

while(fgets (str, 100, fp) != NULL) {

parse_string(str);

}

fclose(fp);

}

void start_process(){

if(config->plugins_enabled)

load_plugins();

if(config->logging_enabled)

dump_logs();

}

int main(int argc, char *argv[]) {

config = (struct Config*) malloc(sizeof(struct Config));

char * file_path = argv[1]; //(1)

parse_config(file_path);

start_process();

return 0;

}

Fig. 2: This code snippet serves as a running example. It shows
values parsed from a file that are stored into a configuration-
hosting object config.

Algorithm 2: Algorithm for Entry-point Specialization
1 Function entrypointSpec(manifestFile, programEntry)
2 inputArgs =: readArgs(manifestFile);
3 programArgs =: getProgramArgs(programEntry);
4 argIndex =: 0;
5 foreach argValue in inputArgs do
6 if argValue is constant then
7 replaceArgUses(argValue, programArgs[argIndex]);
8 end
9 argIndex =: argIndex + 1;

10 end

2.3 Loop Unrolling

Loop unrolling is a commonly used compiler transformation that
facilitates other optimizations, such as vectorization, constant
propagation, and dead code elimination. It is particularly useful
for code specialization and debloating for several reasons:

• Input parsing loops can be unrolled to uncover program ar-
guments that provide static input suitable for propagation and
use in specialization. Usually input parsing loops are struc-
tured to handle a different argument in each iteration (e.g.,
getopt loops). Configuration variables are set based on the
values obtained from arguments. To statically replace each
input processing step (e.g., replacing getopt calls with known
constant arguments), the loop must be fully unrolled to isolate

5

the context of each iteration (i.e., analyze each loop iteration
independently). Such unrolling facilitates constant replacement,
since it allows tracking of the input arguments that flow into the
configuration-hosting variables.

• Speculative loop unrolling is used to determine whether con-
stant propagation would be facilitated. This matters since loop
unrolling without constant folding can increase code size. After
a loop is completely unrolled, constant propagation is applied.
If no constants are folded in the unrolled body, the loop is re-
rolled into its original form. This approach stands in contrast to
existing approaches (such as the standard LLVM loop unrolling
support) that use static heuristics to estimate the cost and benefit
of loop unrolling. Prior approaches are overly conservative and
miss opportunities for profitable loop unrolling.

Algorithm 3: Algorithm for Loop Unrolling
1 Function fullyUnrollLoop(loop)
2 tripCount =: getLoopTripCount(loop);
3 if isConstant(tripCount) then
4 unrolledLoop =: unrollLoop(loop, tripCount);
5 runConstProp(unrolledLoop);
6 end
7 if not isConstant(tripCount) then
8 peeledLoop =: peelLoop(loop, peelCount);
9 runConstProp(peeledLoop);

10 if isNotFullyUnrolled(peeledLoop) then
11 rerollLoop(peeledLoop, tripCount);
12 unrolledLoop =: peeledLoop;
13 end
14 end
15 constsFolded =: getConstantsFolded(unrolledLoop);
16 if constsFolded == 0 then
17 rerollLoop(unrolledLoop);
18 end

Algorithm 3 outlines our unrolling transformation. The
fullyUnrollLoop procedure attempts to completely unroll the
provided loop. First, getLoopTripCount is called to get the
number of iterations the loop will undergo. If this is a constant
value, the loop is fully unrolled. Alternatively, if the loop trip
count is non-constant, the peelLoop procedure is called to move
the first few iterations out of the loop. (The specific number is
configurable.) After unrolling, the runConstProp procedure
runs a constant propagation pass to simplify expressions in the
body of the unrolled loop.

We use a heuristic to decide whether to keep the loop unrolled
or re-roll it back to the original loop. The heuristic counts the
program expressions/statements that have been simplified after
constant propagation. Since the purpose of the unroll transform
is to facilitate propagation of configuration-hosting variables, we
only count program expressions that involve (store or load to)
the configuration-hosting variables. Even if a single program
expression in the loop body is simplified/folded, we keep the loop
unrolled.

Figure 2 shows a routine parse_config. It opens a config-
uration file (that is not shown here) and reads parameter settings
using the fgets call. During each iteration, it reads a single line
from the target file. In the loop body, parse_string is called
to parse the file content that is read. Configuration variables are
set accordingly. This loop can not be unrolled by the existing
LLVM unrolling pass since the loop unroll count is non-constant.
In particular, the count depends on the return value of an external
function fgets. Since the contents of the static configuration file
(specified in the manifest) are known ahead of time, the transform
can compute the count of lines in the configuration file and use
it as the unroll count. For this example, we assume that the

void parse_config(char * filename){

char str[100];

FILE* fp = fopen(filename , "r");

fgets (str, 100, fp);

parse_string(str);

fgets (str, 100, fp);

parse_string(str);

fclose(fp);

}

Fig. 3: Example showing a configuration file parsing loop fully
unrolled using our custom loop unrolling transform.

configuration file includes 2 lines, with one line per configuration
parameter. Hence, the fgets loop is unrolled with a trip count
of 2. Figure 3 shows parse_config after unrolling has been
performed.

2.4 File I/O Specialization
Configuration files include settings that define the deployment
context of an application. Programs often load such information
from files that are maintained by a user or an administrator.
Typically, a program will parse one or more configuration files
and store the extracted parameter values in (configuration-hosting)
variables or other in-memory objects derived from them. This
introduces an opportunity to debloat programs since significant
portions of code may be invoked conditional on these values. To
facilitate statically evaluating such code branches, it is necessary
to lift the configuration details from the relevant file and propagate
them forward. In this section, we describe our transform for
specializing file operations. It replaces instructions that read from
files with constant strings in the program. This introduces static
input that facilitates partial evaluation.

The transform works by maintaining a file context for each
accessed configuration file. When a file is opened, a check is
performed to determine whether the path relates to a configuration.
This pass assumes a list of such paths has been specified. The file
context maintains a pointer to the current position as well as a
Boolean attribute that indicates whether to treat the corresponding
content as a constant for analysis purposes. When operations
modify the context in a manner where it is no longer possible
to reason about the pointer’s position, the attribute is marked non-
constant. Subsequent operations on the context cannot be reasoned
about.

Algorithm 4 outlines the transform. The
analyzeBasicBlock procedure is invoked on each basic
block of a function. Reverse postorder is used to ensure that
a block is visited after all its predecessors have been visited.
The procedure is initially invoked on the first basic block of
the program entry point. The argument to the procedure is a
fileContexts data structure that maintains the state for each
tracked open file. Within each basic block, file I/O calls are
analyzed. Handling for the more common file I/O operations is
described:

File Open: When an operation that initiates access to a file
(such as open or fopen) is encountered, a context data structure
is created to store the analysis state for the target file (such as
the current value of the file position pointer). The analysis only
maintains state for user-specified configuration files. If the mode
in which the file was opened is not read-only, it is not considered
for specialization.

6

File Seeks: When such instructions are encountered, the
transform appropriately updates the file position pointer of the
corresponding file context. If the offset of a seek can be deter-
mined via static analysis, subsequent I/O operations on the same
file descriptor can be potentially specialized. If the offset is a
dynamic value, the file position pointer can no longer be reasoned
about. In this case, the file context is marked non-constant, which
indicates that further operations on the file cannot be specialized.

File Reads: If the byte range read from the file can be
statically determined, each read is replaced by two instructions.
The first creates a constant string that corresponds to the data
at the corresponding byte range in the file. The second is a
memcpy instruction that copies this string into the target buffer.
The position pointer of the file context is appropriately updated.
This replacement of file read instructions introduces static data that
can be further propagated with our custom constant propagation
transform.

Function Calls: File descriptors may be passed as arguments
to routines that access a target through I/O-related instructions,
such as mmap, seek, and read. To support inter-procedural anal-
ysis, the current state of tracked file contexts is forwarded along
with control of the analysis to the encountered callee function. The
transform makes conservative assumptions regarding side-effects
and marks the file context as non-constant if it is an argument to
the function and the callee is externally defined (in a library).

Branches: During analysis, control is transferred to the suc-
cessor basic block of a branch only after all its predecessors have
been visited. This is necessary since the file context available
at a particular block is computed as an intersection of the file
contexts available at the predecessor blocks. For instance, if two
predecessors contain unequal file seek offsets to the same file, we
can no longer statically reason about the state of the file position
pointer, and hence the file context is marked non-constant.

File Close: When a file descriptor is closed (by close or
fclose), the context object corresponding to the file is freed.

To illustrate how the file I/O specialization pass works, we
describe a small example. Figure 4 shows a file parsing routine
parse_config that reads configuration settings. It does this
in a loop where fgets is used to read one line of the file in
each iteration. The code then populates the configuration-hosting
object config. We assume in this example that the configu-
ration file “config file.txt” contains two configuration settings:
“logging disabled” and “plugins disabled”. After the transform
has been applied, the result is the code shown in Figure 5. Note
that the file parsing code has been simplified with respect to the
configuration file settings. The parsing loop’s trip count could
be statically determined, allowing the loop to be unrolled. Next,
each fgets call is replaced with the creation of a corresponding
constant string and a memcpy that copies it to the target memory
buffer str. The constant strings can then be used by other
compiler transforms to simplify the code. While the examples are
shown in C syntax for readability, the actual transformations are
applied to the LLVM bitcode.

2.5 Constant Propagation

TRIMMER uses a custom inter-procedural transform that propa-
gates the constant values in configuration-hosting variables and
memory objects. Constant propagation of configuration values
further simplifies program expressions and creates opportunities
for pruning dead code.

Algorithm 4: Algorithm for File Specialization
1 Function analyzeBasicBlock(basicBlock, fileContexts)
2 inst =: first instruction in basicBlock ;
3 repeat
4 switch inst.getType() do
5 case FileOpen do
6 if manifestIncludesFile(filePath) then
7 openFileContext =: createFileContext(inst);

fileContexts.add(openFileContext);
8 end
9 end

10 case FileSeek do
11 context =: fileContexts.getContext(inst);
12 if isConst(seekOffset) then
13 context.updateFilePosition(seekOffset);
14 else
15 context.markNonConstant();
16 end
17 end
18 case FileRead do
19 context =: fileContexts.getContext(inst);
20 if isConst(bytesRead) and context.isConst() then
21 readStr =: getConstString(context,

bytesRead);
22 addMemcpy(readStr, targetBuffer);
23 context.updateFilePosition(bytesRead);
24 else
25 context.markNonConstant();
26 end
27 end
28 case FunctionCall do
29 if callee is an internal function then
30 analyzeBasicBlock(entryBB, fileContexts);
31 end
32 if callee is an external function then
33 context =: fileContexts.getContext(inst);
34 context.markNonConstant();
35 end
36 end
37 case Branch do
38 foreach successor block in branchInst do
39 if all predecessors are visited then
40 newContext =: mergePredContext();
41 analyzeBasicBlock(successor,

newContext);
42 end
43 end
44 end
45 case FileClose do
46 fileContext =: fileContexts.getContext(inst);
47 fileContexts.removeContext(fileContext);
48 end
49 end
50 inst =: getSuccessorInst(inst);
51 until inst is the last instruction;
52 markVisited(basicBlock);

Due to the conservative nature of constant propagation in
production compilers, such as LLVM [20], only limited dead
code elimination is achieved (as we demonstrate in our evalua-
tion). Standard constant propagation passes prefer fast compila-
tion over more precise but potentially expensive analyses. This
design choice is suitable in the generic compilation pipeline but
suboptimal for the specialized task of code debloating. We find
that context-sensitive constant propagation is more effective when
compared to the context-insensitive analysis that was supported in
an earlier version of TRIMMER [14]). Both modes are supported in
the current version of TRIMMER and reported on in our evaluation.

The constant propagation transform works by maintaining
memory state for each of the variables marked as configuration-
hosting, and tracks the loads and stores from these. Algorithm
5 describes the algorithm for the interprocedural constant propa-
gation. The runOnBasicBlock procedure is invoked on each
basic block of a function, in reverse postorder. Reverse postorder
ensures a block is visited after all its predecessor blocks have been

7

void parse_string(char* str, struct Config *config){

if(strcmp(str, "disable_logging") == 0)

config->logging_enabled = false;

if(strcmp(str, "disable_plugins") == 0)

config->plugins_enabled = false;

}

void parse_config(struct Config *config){

char str[100];

FILE* fp = fopen("config_file.txt" , "r");

while(fgets (str, 100, fp) != NULL) {

parse_string(str, config);

}

fclose(fp);

}

void start_process(struct Config *config){

if(config->plugins_enabled)

load_plugins();

if(config->logging_enabled)

dump_logs();

}

int main(int argc, char *argv[]) {

struct Config* config = (struct Config*) malloc(sizeof(struct

Config));

parse_config(config);

start_process(config);

return 0;

}

Fig. 4: Configuration values are parsed from a config file and
stored into a configuration-hosting object config.

const char* const_string1 = "disable_logging";

const char* const_string2 = "disable_plugins";

void parse_config(struct Config *config){

char str[100];

// loop is unrolled and fgets replaced with memcpy

memcpy(str, const_string1, strlen(const_string1));

parse_string(str, config);

memcpy(str, const_string2, strlen(const_string2));

parse_string(str, config);

}

Fig. 5: The file specialization transform replaces the fgets
operation with memcpy calls to constant strings.

visited. The procedure is initially invoked on the entry basic block
of the program entry routine. The argument to the procedure is a
context data structure that maintains the state for each tracked
memory object. Within the procedure, each instruction in the
basic block is traversed. The key points of the algorithm can be
summarized as follows:

Allocations: A context data structure is created for each
allocation site; including both stack and heap allocations. For each
allocation-site, the contiguous memory allocated is referred to as a
memory object. For each memory object, a context data structure
is created to represent the memory state of the object. The memory
state for globally declared objects is created at analysis startup.

Loads and Stores: For each Store instruction, the memory
context of the destination memory object is updated. If the source
of store is a constant value, the memory state is updated with
the corresponding constant value. For each Load instruction, the
target is directly replaced with the constant value if the value to
be loaded is constant. Such constant folding of loads promotes
further constant propagation.

Function Calls: The processCallInst procedure details
the policies for handling call instructions. For callee functions
defined externally, the arguments and the return value of the
function are marked as non-constant since the memory side-effects

Algorithm 5: Algorithm for Interprocedural Constant
Propagation
1 Function processCallInst(callInst, context)
2 if callee is externally defined then
3 foreach argument in callInst do
4 markNonConstant(argument, context);
5 end
6 else
7 runOnBasicBlock(callee → entryBlock, context);
8 end
9

10 Function processBranchInst(branchInst)
11 foreach successor block in branchInst do
12 if all predecessors are visited then
13 newContext =: mergePredecessorContext();
14 runOnBasicBlock(successor, newContext);
15 end
16 end
17
18 Function runOnBasicBlock(basicBlock, context)
19 i =: first instruction in basicBlock;
20 repeat
21 if i is an allocation then
22 objectContext =: createObjectContext(i);
23 addToContext(objectContext, context);
24 end
25 if i is a store instruction then
26 if constant value store then
27 updateMemContext(operand, source, context);
28 else
29 markNonConstant(operand, context);
30 end
31 end
32 if i is a load instruction then
33 if operand is constant in context then
34 r
35 end
36 eplaceLoadWithConstant(i, context);
37 end
38 if i is a call instruction then
39 processCallInst(i);
40 end
41 if i is a branch instruction then
42 processBranchInst(i);
43 end
44 i =: getSuccessorInst(i);
45 until i is the last instruction;
46 markVisited(basicBlock);

of the external function are unknown. An exception to this rule
are commonly-used library calls such as file I/O calls and string
processing calls (e.g., fopen, open, strcmp, strlen, atoi) which can
be statically evaluated for known constant arguments. Currently,
we support such static evaluation (specialization) for a total of 38
commonly-used libc calls.

For callee functions defined internally, the control is trans-
ferred to the callee along with the state of the memory context at
the call-site. As the constant propagation transform replaces the
constant memory loads inside a function body, the specialized call
path is only valid in a particular memory context. In the context-
sensitive mode, for each call-site with a unique set of function
arguments, a new function clone is created. This is in contrast to
context-insensitive mode, where at most a single function clone is
created; which is possible if all call-sites have the same memory
state for all the function arguments.

Branches: As branch instructions are encountered, control is
transferred to the successor blocks. The processBranchInst
shows details of handling branch instructions. Control is trans-
ferred to a successor basic block only if all its predecessors have
been visited. Visiting all predecessor blocks is necessary, since
the memory context available at a particular block is computed as
an intersection of the constant memory contexts available at all
the predecessor blocks. For instance, if one of the predecessors
includes a non-constant store to a memory object, the successor’s

8

memory context corresponding to that object is marked non-
constant, regardless of a potentially constant context in a different
predecessor. Similarly, if both predecessors have constant but
different values for the same memory object, the successor’s
memory context corresponding to that object is still marked non-
constant.

Figure 6 shows the code after applying our constant prop-
agation to the code in Figure 5. parse_config includes 2
different calls to parse_string each with a different memory
context. In context-sensitive mode (the default), two function
clones are made, one for each context. The strcmp function
in each specialized parse_string can be statically evalu-
ated since the arguments (for which each function clone is
now specialized) are constant strings. Statically evaluating the
result of strcmp calls facilitates folding the subsequent branch
instructions, thereby reducing config->plugins_enabled
and config->logging_enabled to constants. By this point,
the configuration-hosting variables are reduced to constants, which
further allows the branches in the start_process function
(Figure 2) to be statically evaluated; allowing for potentially
pruning functions load_plugins() and dump_logs() (as-
suming these functions are not called from elsewhere in the
program call-graph).

const char* const_string1 = "disable_logging";

const char* const_string2 = "disable_plugins";

struct Config* config;

// parse_string cloned and specialized for const_string1

void parse_string1(){

config->logging_enabled = false;

}

// parse_string cloned and specialized for const_string2

void parse_string2(){

config->plugins_enabled = false;

}

void parse_config(){

char str[100];

memcpy(str, const_string1, strlen(const_string1));

// parse_string specialized for const_string1

parse_string1();

memcpy(str, const_string2, strlen(const_string2));

// parse_string specialized for const_string2

parse_string2();

}

Fig. 6: Context-sensitive constant propagation creates spe-
cialized clones parse_string1 and parse_string2 of
parse_string. Each cloned version is specialized for a par-
ticular value of an input string being parsed.

3 SOUNDNESS OF TRANSFORMATIONS

TRIMMER provides propagation of configuration values through
a combination of sequentially executed passes: configuration an-
notation, entry-point specialization and constant folding (includes
loop unrolling, file I/O specialization and constant propagation)
while allowing existing LLVM analyses to prune provably unused
code in light of the introduced constants. To preserve program
semantics, our transformations must prevent any incorrect constant
folding (replacing a non-constant expression with a constant
value). Incorrect constant folding may also potentially lead to un-
sound dead code elimination (eliminating functions/branches that
may be invoked). To ensure the correctness of constant folding,
we make conservative assumptions regarding memory side effects.

While these assumptions limit the precision of our analysis, they
ensure that the transformations are sound. We discuss scenarios
that present threats to the validity of our transformations and the
assumptions necessary to preserve soundness.

Entry-point Specialization: In the entry-point specialization
transform, we replace occurrences of the program input arguments
(argv references) with corresponding constant values provided in
the manifest file. Entry-point specialization is a sound and incom-
plete transformation to specialize programs under the assumption
that command line arguments are not dynamically modified in
the program. Dynamically configurable software uses other means
such as sockets or files for reconfiguration (e.g., HUP signal is
commonly used in Unix programs to re-read the configuration
file). In practice, dynamic reconfigurability is uncommon, and
hence input specialization can be correctly applied in the context
of most programs. Notably, we do not eliminate the command
line arguments but only eliminate their references. The arguments
are still present and loaded in memory. There can be pointers
to argv that we cannot track due to imprecise pointer analysis
but those pointers will still read the correct arguments (main-
taining soundness) and these references will not be converted to
constants (limiting completeness). Since only references that are
guaranteed to point to arguments are replaced, other variables are
not impacted. Similarly, in the constant folding transform, only
the references to statically-proven constant variables are replaced,
thereby not impacting variables with dynamic values.

File I/O Specialization: Similar to entry-point specializa-
tion, file I/O specialization is sound and incomplete under the
assumption that the configuration file is not reloaded at runtime
with new configuration parameters. (e.g., HUP signal to re-read
the configuration file). To preserve correctness, we make other
conservative assumptions. In scenarios where the file pointer of
an open configuration file is passed as a pointer to an external
function call, we assume global side-effects and no longer consider
the corresponding file pointer for specialization (i.e., no further
reads from the file can be folded to constants).

External Function Calls: For external function calls with
unknown semantics, we make conservative assumptions regarding
the memory side effects. Notably, each call argument that is not
a read-only function parameter is assumed to be modified, and
the corresponding context is marked as non-constant. For standard
library interfaces (e.g., libc calls) with predefined standard seman-
tics, the transformations can more precisely reason about memory
side effects. To allow the tool to analyze the library calls, the
users can statically link the libraries with the application modules
(eliminating external calls).

Constant Folding of Global Variables. The constant folding
of globals is sound under the assumption that program globals
are not modified in external library modules that are not statically
linked with the program. The constant propagation analysis as-
sumes that external library interfaces do not have side effects to
global variables, unless a pointer to a global is explicitly passed as
argument to an external function call interface.

4 EXPERIMENTAL SETUP

4.1 Benchmarks
We evaluate TRIMMER on a total of 20 benchmarks that include
commonly-used Linux programs. Table 1 shows the list of pro-
grams used in the evaluation along with the version, lines of code
(LOC), original (baseline) binary size, command-line arguments

9

TABLE 1: Characteristics of evaluated programs and arguments used for specialization. config_file_path is a placeholder for
the configuration file used for specialization (with configuration options). “ ” denotes dynamic-valued arguments that can be specified
at runtime.

Application Version LOC Command-line Configuration Binary Size Debloated Binary
Arguments File Parameters (-O3) Size

dnsproxy 1.17 528 -c config file path authoritative 18.9KB 14.7KB
authoritative-port

authoritative-timeout
recursive

recursive-port
recursive-timeout

listen
port
user

statistics

mini httpd 1.19 3155 -C config file path user 58.9KB 46.4KB
host
port
dir

sans 0.1.0 3190 -c config file path user 39.5KB 35.3KB
listen

test server
cn server

server

totd 1.5.3 5476 -c config file path -d2 forwarder 84.7KB 76.4KB
port

pidfile

thttpd 2.25 6733 -C config file path dir 91.9KB 83.5KB
nochroot
pidfile
port

novhost
host

wget 1.17.1 68K –config=config file path quota 431KB 426KB
tries

passiveftp
waitretry

timestamping
dotstyle

wait
dirstruct
recursive

knockd 0.5 1416 -i eth0 31.9KB 27.7KB
httping 2.4 4193 -G -s -X -b -B 58.2KB 29.3KB
bzip2 1.0.5 5295 -fkqs input file path 104KB 55.7KB
memcached 1.4.4 5772 -m -l 84.9KB 88.9KB
aircrack-ng 1.1 5849 -b -a wpa -s -w dictionary.lst 124KB 85KB
gzip 1.3.12 7013 –force –quiet 76KB 40.8KB
netstat 1.6 7786 -a -e -p 98.4KB 57.2KB
airtun-ng 1.1 7816 -a -w 82.2KB 52KB
netperf 2.4.3 23K -H -t TCP RR -v 0 106KB 39.5KB
readelf 2.28 72K -a input file path 557.5KB 602.5KB
yices 2.61 167K –logic=QF AUFBV input file path 1.7MB 1.4MB
curl 7.47.0 174K –compress –http1.1 –ipv4 –ssl 170KB 170KB
gprof 2.2.8 461K –q input file path 1.1MB 914KB
objdump 2.2.8 860K –D –syms -s -w input file path 2.3MB 1.7MB

10

for which they are specialized, file arguments for applications that
are specialized for static configurations files, and final debloated
size.

We selected a diverse set of programs spanning different
domains including webservers (mini httpd and thttpd), compres-
sion tools (bzip2, gzip), networking (netstat, netperf, aircrack-ng,
airtun-ng, httping), data transfer tools (wget, curl), dns servers
(dnsproxy, totd and sans), SMT solver (yices), port knock server
(knockd), memory object caching daemon (memcached) and
commonly-used linux utilities (objdump, readelf, gprof). From
20 benchmarks, 6 are specialized for configuration files while 14
programs are specialized for command-line inputs.

Our selection of static program arguments is driven by two
common use case scenarios. We select arguments that i) represent
the core functionality of the application while leaving out the
auxiliary features, and ii) represent a single use case for an
application that supports multiple use cases. The first is useful
for applications that provide certain core functionality, and the
auxiliary features are rarely ever used, presenting an opportunity
for code pruning. The second scenario is useful when applications
have multiple usage scenarios. However, only a subset of those
usage scenarios are likely to be used in a particular deployment.

Due to a known limitation in the LLVM-v7 loop unrolling
transformation [21], we required minor changes to 3 loops in
3 different benchmarks (mini httpd, thttpd, yices). The LLVM
loop rotate pass (required for loop unrolling) does not properly
handle loops that includes a loop condition that is composed of
multiple terms. Such a loop structure at the LLVM IR level results
in multiple exits to the latch (exiting) basic block. We manually
rewrote such loops (only 3 across all benchmarks) to use for
loops with the loop exit conditions added as if statements in
the loop body with appropriately placed break statements. With
newer LLVM versions (not yet experimented with TRIMMER) this
limitation may be entirely removed.

4.2 Comparisons for Code Size Reduction.
We compare TRIMMER against:
• Baseline -O3: Compiling the binary without specialization and

with -O3 level of optimization (optimized for performance).
• Baseline -Os: Compiling the binary without specialization and

with -Os level of optimization (optimized for size).
• OCCAM: We compare TRIMMER against state-of-the-art code

debloating tool OCCAM [8]. OCCAM’s static analysis func-
tionality does not support file I/O specialization, so we only
provide comparisons for programs that can be specialized with
command-line inputs.
In all cases, we compare the size of the compiled binary after
stripping the symbol table and debug information. TRIMMER

and our baselines use LLVM version 7. OCCAM is based on
LLVM version 10.

4.3 Performance and Analysis Time Evaluations.
We conducted experiments on an isolated Ubuntu virtual ma-
chine with 1.8GHz processor and 16GB RAM. For performance
measurements, we use application-specific benchmarks where
available and otherwise measure execution time for running the
program binary with sample inputs. For mini httpd and thttpd
webservers, we use the Apache Benchmark to measure time per
concurrent request. For memcached, we use memcslap to gener-
ate test workloads. For other programs, we measured execution

times across 100 executions, and report the average and variance.
Across all benchmarks (and across different runs), we observe a
reasonably low variance of 6.1% and 6.5% in the execution times
for baseline and specialized binaries, respectively.

4.4 Heuristics used to Limit Function Cloning.

Context-sensitive constant propagation is susceptible to excessive
cloning which can lead to increased code size (especially with
recursive functions and loops). To mitigate this, we introduce a
configurable knob that sets the limit for the number of functions
that can be cloned for a single function. This threshold is manually
configured (and is easy to do for a developer). In our evaluations,
we set this knob for 3 programs: wget, gprof and objdump.
The optimum values we found for these 3 programs (empirically
determined) are 300, 400 and 200, respectively.

4.5 Testing of Specialized Binaries

We have verified correctness of specialized binaries by performing
bit-wise differential testing on the output of the original binaries
and the specialized versions using a small number of carefully
designed test cases. For each specialized binary produced by
TRIMMER, we wrote test cases to ensure that the final debloated
binaries run successfully as well as produce the same output as
the original output on select scenarios.

For all of the applications evaluated, we ran the original
binaries with the configuration arguments for which we spe-
cialized them and the specialized binaries, and compared their
outputs. Specifically, for bzip2, gzip, wget and curl, we ensure
that the correct output files (for bzip2 and gzip, the compressed or
decompressed files and for wget and curl, the downloaded files)
are produced. For webservers (mini httpd and thttpd), we used
wget to ensure that they serve the same files and headers as the
original unspecialized versions. For DNS servers, we generated a
small number of DNS queries using dig and checked that identical
responses are generated. For memcached, we ran memcslap to
check whether the server is properly functioning or not. For
aircrack-ng, we checked for the cracking key in a sample CAP
file.

5 EVALUATION

In this evaluation, we seek to answer the following questions:

• Q1. Impact on Code Size: Does TRIMMER reduce code sizes
for real-world applications?

• Q2. Comparison with OCCAM: How does TRIMMER com-
pare to other existing tools for static analysis driven code
specialization tools such as OCCAM?

• Q3. Impact of varying Context-sensitivity: What is the impact
of varying context-sensitivity in constant propagation on code
size reduction and analysis time?

• Q4. Impact on Performance: Can application specialization
using TRIMMER improve application performance?

• Q5. Impact on Security: Does code debloating reduce security
vulnerabilities?

• Q6. Scalability of Analyses: What is the peak memory usage
of TRIMMER analyses?

11

0

20

40

60

80

100

120

Si
ze

 a
s

p
e

rc
e

n
ta

ge
 o

f
B

as
e

lin
e

Baseline(-O3) Baseline(-Os) OCCAM Trimmer

Fig. 7: Application binary sizes as a percentage of the Baseline after running TRIMMER. The Baseline (-Os) bar shows the code size
reduction with -Os flag. Results with the OCCAM code specialization tool are also included.

5.1 Impact on Code Size
To answer Q1 of our evaluation questions, we evaluate the ef-
fectiveness of TRIMMER in achieving code size reductions for
real-world applications. Figure 7 shows the binary size reductions
after specializing programs for their corresponding chosen config-
urations (shown in Table 1).

We describe the programs and the corresponding chosen con-
figurations below. We also report the percentage change in the size
of binary with respect to the baselines, -O3 and -Os. For programs
that had the same size for both -O3 and -Os, we provide a single
value for the relative code size reduction. We also report instances
where there was no code size reduction or a slight increase in
code size. In scenarios where only a few program instructions
are conditional on configuration constants, constant propagation
of configuration values does not result in any noticeable code size
reductions. Moreover, code size can also increase due to a large
number of functions cloned as part of specialization.

dnsproxy is a proxy for DNS queries. The configuration file
for dnsproxy allows for specifying parameters including ports,
addresses to listen on, timeouts, and statistics (among other similar
settings). We specialized it for the default configuration file that
is shipped with the tool and achieve a binary size reduction of
22.4%. This configuration is an example of specialization for core
functionality (scenario (i) described in Section 4.1).

mini httpd is a small HTTP web server with basic features,
including GET/HEAD/POST methods, CGI, basic authentication,
and standard logging [22]. It reads user-tunable parameters from
a configuration file that includes host address, port number,
root directory, and logging among other options. We specialized
mini httpd for a static configuration that disables activity logging,
virtual hosting, SSL/HTTPS and CGI, and includes username, host

name, port number and root directory. While logs are useful for
tracking activity, they can consume large amounts of secondary
storage [23] and may not be suitable for resource constrained
embedded devices with limited flash memory [24] whereas virtual
hosting and CGI are auxiliary features. For this configuration, we
observe a binary size reduction of 21.2%.

sans is an anti-spoofing DNS server [25] that supports both
TCP and UDP connections. sans can be configured to use a
SOCKS5 connection or a plain TCP connection. sans reads from
a configuration file that includes parameters for configuring host
address and DNS server. We specialized sans for SOCKS5 support
in one configuration and for plain TCP support in the other. This
configuration is an example of a scenario where only one of
multiple configurations is likely to be used in deployment, hence
presenting an opportunity to specialize (scenario ii) described in
Section 4.1). Across both specialized binaries, different function-
ality is pruned but (incidentally) we get the same binary size
reduction of 10.6%.

totd is a DNS proxy nameserver that facilitates IPv6-only
networks and hosts to communicate with IPv4 connections using
network or transport level translation mechanisms [26]. totd reads
configuration options via a configuration file with options includ-
ing service port, list of interfaces (to listen on), and enabling/dis-
abling support for IPv4 and/or IPv6 queries. We specialized the
program for two configurations, one in which totd listens to client
queries on IPv6 addresses and the other in which it only listens on
IPv4 addresses. For both configurations, we achieved a binary size
reduction of 9.8% and 5.2% compared to -O3 and -Os baselines,
respectively. This configuration is also an example of specializing
for common use case scenarios.

12

thttpd is a simple HTTP server [27] that is suitable for
embedded devices. We specialized thttpd for parameters including
the host name, the used port number, root directory (among similar
options), while disabling support for logging, chroot and virtual
hosting. This specialization is for the core use case of thttpd, and
results in a binary size reduction of 9.1% and 4.8% compared to
-O3 and -Os baselines, respectively.

wget is a package for retrieving files with a variety of sup-
ported protocols including HTTP, HTTPS, FTP, FTPS. wget can
read configuration settings from both command-line input and
configuration files. The configuration options include configuring
progress bars, rate limiting, enabling/disabling debug output and
selecting IP address family among many other options. We spe-
cialized wget with a configuration that includes quota, number of
retries, passive FTP mode, time-stamping, wait between retries,
retrieval output, wait between connections, creating directory
structure and recursive mode excluding secondary options such as
header, proxy, recursive level and encoding: achieving only minor
binary size reductions of 1.1% and 0.1% compared to -O3 and
-Os, respectively.

knockd is a port-knock server. It listens to all traffic on an
Ethernet (or PPP) interface, looking for special ”knock” sequences
of port-hits. We specialized knockd for a common use case using
its default configuration for listening on an Ethernet interface
(disabling support for the PPP interface). Specializing for this
configuration achieves a binary size reduction of 13.2%.

httping tests and measures the latency and throughput of a
webserver. We specialized httping to use GET requests for down-
loading compressed data from a target server and excluded aux-
iliary features such as options for configuring timeout thresholds,
SSL based connections, support for reading from a configuration
file, and support for a SOCK5 proxy server. This configuration
results in a binary size reduction of 49.6%.

bzip2 is an open-source file compression program [28]. We
created two specialized versions of bzip2, one for compression
and the other for decompression. Creating separate specialized
versions is useful in scenarios where there is unidirectional com-
munication. For example, it is not uncommon that data accumu-
lated on IoT devices is compressed before sending to the cloud
(to reduce network bandwidth usage), and decompressed on the
receiving cloud server [29]. In such a scenario, the IoT device
only needs compression functionality, while the cloud server only
needs decompression functionality. Specialization of bzip2 for
compression resulted in binary size reduction of 46.4% and 41.8%
compared to -O3 and -Os baselines, respectively. Specialization
for decompression resulted in reductions of 54.3% and 50.4%
compared to -O3 and -Os baselines, respectively.

gzip is a relatively older compression program that uses
Lempel-Ziv (LZ77) coding [30]. Specializing gzip for compres-
sion provides a binary size reduction of 46.4% and 43.3% com-
pared to -O3 and -Os baselines, respectively. Specializing gzip for
decompression provides a binary size reduction of 8.3% and 3.1%
compared to -O3 and -Os baselines, respectively.

memcached is a popular key-value distributed memory object
caching system. It is used extensively for caching results of
database queries and API calls [31]. We specialized memcached
for two essential arguments: maximum memory for object storage
(-m) and the IP address to bind to (-l). All other configurations
(e.g., data item sizes, page sizes) are set to their default values.
For this configuration, we observe a slight code size increase of
4.8%.

aircrack-ng is a WiFi key cracking program that supports
two encryption technologies, WEP and WPA/WPA2-PSK. We
specialized aircrack-ng for cracking WPA/WPA2-PSK keys (re-
moving support for WEP keys) and added an option to display
the cracked key (if found), which is a common use case scenario.
This configuration results in binary size reductions of 31.3% and
17.7% compared to -O3 and -Os baselines, respectively.

netstat prints information about the Linux networking sub-
system. We specialize netstat with -all option, showing all active
internet connections and UNIX domain sockets. With this option,
we achieve binary size reductions of 42% and 39.4% compared to
-O3 and -Os baselines, respectively.

airtun-ng is a virtual tunnel interface creator. We specialize
airtun-ng with a specified MAC address for the access point and a
WEP key to encrypt packets, excluding support for other auxiliary
features (e.g., option to replay packets). With this configuration,
we achieve binary size reductions of 36.6% and 33.3% compared
to -O3 and -Os, respectively.

netperf is a network performance benchmark that can mea-
sure various aspects of networking performance. We special-
ize netperf for a commonly-used network test TCP RR (TCP
request/response), and remove support for other tests such as
TCP STREAM, UDP STREAM and UDP RR. This configu-
ration represents the scenario where a program/tool supports
multiple use cases but the deployment is likely to use only one
specific setting. This configuration results in binary size reduc-
tions of 62.7% and 61.2% compared to -O3 and -Os baselines,
respectively.

readelf displays information about one or more ELF format
object files. The options control what particular information to
display. We specialize readelf for –all option, which displays
information contained in ELF header, file segments headers, file
section headers, symbol table, file relocation section, dynamic
section, notes segments and/or sections and version section. We
leave extra details such as section information, unwind section in-
formation and architecture-specific information. Like memcached,
specializing readelf for this configuration results in a slight code
size increase of 8%.

yices [32] is an SMT solver that includes support for multiple
logics (e.g. propositional, bitvector etc.) We specialized yices for
arrays, bit vectors and uninterpreted functions, while disabling
support for the logic of linear and non-linear arithmetic. This
configuration is useful for tasks such as hardware verification [33]
and symbolic execution [34]. For this configuration, we achieve
binary size reductions of 20.6% and 19.7% compared to -O3 and
-Os, respectively.

curl [35] is a tool commonly used for transferring data. While
curl is used in a variety of different ways, we specialized it
for the common usage scenario of reading data over an HTTPS
connection given a target URL. This particular curl configuration
is commonly used for reading RSS feeds. For this configuration,
the code size remains the same (no increase or decrease).

gprof produces an execution profile of C, Pascal, or Fortran77
programs. gprof takes as input profile data dumped by a profile-
instrumented program that is compiled with the -pg option (sup-
ported in clang and gcc). It provides the following kinds of profile
analysis outputs: (i) a flat profile that shows the amount of time
spent in each function, (ii) a call graph mode that shows the
program call graph with annotations on the time spent in each
function and its children, (iii) an annotated source listing mode
that labels each program instruction with the number of times it

13

0

50

100

150

200

250

S
iz

e
 a

s
p

e
rc

e
n

ta
ge

 o
f

B
a

se
li

n
e

CI Sparse-CS Full-CS

Fig. 8: Across benchmarks, comparing binary size reductions for
context-insensitive analysis (CI), context-sensitive analysis just for
configuration-hosting variables (Sparse-CS), and context-sensitive
analysis for all program variables (Full-CS).

is dynamically executed. We specialize gprof for the call graph
profile mode (option (ii)), and achieve binary size reductions of
19.9% and 18.4% compared to -O3 and -Os, respectively.

objdump is a commonly-used Linux utility for extracting
information of binary object files. We specialized objdump for
displaying disassembly of all program sections (code and data
sections) of an object file. This configuration excludes features
for printing out debugging information and printing dynamic
relocation entries (among other such auxiliary features). For this
configuration, we achieve binary size reductions of 24.5% and
23.5% compared to -O3 and -Os, respectively.

Summary. For 14 benchmarks, we get code size reductions
of more than 10%, minor reductions for wget, thttpd, and totd, no
code size change for curl and a slightly increased binary size for
readelf and memcached. Across benchmarks, TRIMMER provides
a mean code size reduction of 22.7% with a maximum reduction
of 62.7% compared to the -O3 baseline. Compared to the -Os
baseline TRIMMER provides a mean code size reduction of 20.4%
and a maximum reduction of 61.2%. These results demonstrate
that TRIMMER can reduce code sizes for real-world applications.

5.2 Comparison with OCCAM
We compare TRIMMER with OCCAM’s default static-analysis-
based functionality [8] to answer Q2 of our evaluation questions.
Since this usage of OCCAM does not support file I/O special-
ization, we could not evaluate applications that strictly required a
configuration file for purposes of specialization (wget, dnsproxy,
totd, and sans). Moreover, we do not compare against yices, since
its specialized binary (after running OCCAM) exhibited runtime
errors. We compare the remaining 15 out of 20 programs in our
benchmark set. Similar to the knob we support for limiting max-
imum applicable function cloning (in context-sensitive constant
propagation), OCCAM supports four modes for intra-module spe-
cialization. These include only-once (i.e. a single function can
be cloned at most once), aggressive (i.e. a new function clone
created per unique calling context), nonrec-aggressive (i.e.
same as aggressive mode but does not clone recursive functions),

and bounded (i.e. a single function can be cloned at most
k times, where k is a configurable parameter). We evaluated
resultant binaries with all four modes of intra-module special-
ization in our experiments. For bounded mode, we tried different
values of k = 1, 3, 5, 10, 50, 100, 200. For all applications, the
only-once policy resulted in the smallest code sizes. Figure 7
shows the reduction with OCCAM in the only-once mode.
Compared to OCCAM (in the only-once mode), we found that
TRIMMER provides higher code size reductions for 12 of the 15
evaluated benchmarks. On average, OCCAM only provides 8.6%
code reduction whereas TRIMMER provides a reduction of 26%
across these 15 programs.

Also, OCCAM supports coarse-grained control on function
cloning. For instance, the only-once policy is overly conser-
vative because often multiple function clones are required when
different calling contexts introduce new unique constant values.
The aggressive mode is overly aggressive in that it creates
unnecessary function clones. The sparse context-sensitive special-
ization mode in TRIMMER enables a sweet-spot where multiple
function clones are enabled for configuration-hosting variables to
facilitate constant propagation, and avoided/skipped for functions
that do not involve configuration values.

5.3 Impact of Varying Context-Sensitivity
We next answer Q3 of our evaluation questions by evaluating the
impact of varying context-sensitivity in constant propagation on
code size reduction and analysis time. We evaluate three different
analysis modes:
• CI: context-insensitive analysis for all program variables.
• Sparse-CS: context-sensitive analysis for configuration-hosting

variables. This is the default in TRIMMER.
• Full-CS: context-sensitive analysis for all program variables.

Impact on Code Size Reductions.
Figure 8 illustrates the code size reductions achieved across

benchmarks while varying context-sensitivity; specifically three
modes: CI, Sparse-CS, and Full-CS. yices is not shown for Full-
CS since the analysis runs out of memory after 5 minutes. For
6 programs (memcached, netstat, netperf, aircrack-ng, airtun-ng
and gzip), CI, Sparse-CS, and Full-CS exhibit similar reductions.
For 9 programs, Sparse-CS provides the highest reduction in
code size. For the remaining 5 programs (wget, bzip2, objdump,
httping, and readelf), Sparse-CS is a close-second in terms of
reductions. For 3 programs (mini httpd, bzip2, and thttpd), CI
performs worse compared to both Sparse-CS and Full-CS. This
is because the imprecision of context-insensitive analysis leads
to missed opportunities for constant folding (and often loop
unrolling based on constant trip counts) eventually impacting the
amount of achievable debloating. Overall, Sparse-CS appears to
find a sweet-spot between CI and Full-CS since a) it allows for
effective constant propagation via context-sensitive analysis, but
also b) is conservative in function cloning since it only considers
configuration-hosting variables. Overall, Sparse-CS provides an
average reduction of 22.7%, Full-CS provides an average reduc-
tion of 14.1%, and CI provides an average reduction of 10.9%.
Hence, Sparse-CS outperforms in reducing code size.

Analyzing Function Cloning and Dead Function Removal.
Table 2 displays the functions cloned (FC), instructions cloned
(IC), and functions removed (FR) and instructions removed (IR)
for each benchmark. On average, CI clones 51.3 functions while
removing 187.1 functions. Sparse-CS clones 101.1 functions while

14

TABLE 2: Statistics on Functions Cloned (FC), Instructions Cloned(IC), Functions Removed (FR) and Instructions Removed (IR) for
all three modes CI, Sparse-CS, and Full-CS.

CI Sparse-CS Full-CS

Program FC IC FR IR FC IC FR IR FC IC FR IR

dnsproxy 3 87 2 349 1 75 2 349 20 230 2 206
mini httpd 4 10478 1 -8424 23 378 17 2793 24 1539 17 1673
sans 3 435 6 1708 11 239 7 1931 93 1094 8 1518
bzip2 17 1247 14 3486 21 179 42 12225 66 929 47 12248
totd 29 1600 16 3984 11 292 16 4964 123 2089 16 3584
memcached 7 2929 11 1424 6 2927 11 1424 7 2929 11 1424
aircrack-ng 3 128 39 7141 25 846 39 6423 31 897 39 6372
thttpd 32 2690 5 9 70 533 10 4226 150 3159 10 1701
gzip 35 530 56 7438 13 431 56 7379 1126 91 56 7381
netstat 1 8 152 6708 0 0 152 6708 1 8 152 6708
netperf 20 1080 51 10849 16 1236 51 10799 39 1698 51 10523
wget 41 1298 81 16294 184 3730 89 14400 191 3813 89 14323
readelf 57 8225 54 18790 154 8921 54 18235 728 22150 54 5006
objdump 24 197 1009 150929 103 2747 1009 148355 119 1394 1009 149732
curl 23 780 16 5222 939 805 16 5034 5293 1473 16 4499
yices 670 11925 1761 43860 31 228 2470 65318 - - - -
gprof 45 3339 366 91084 48 1794 366 92017 493 4573 366 89869
airtun-ng 4 91 61 6438 3 85 61 6444 4 91 61 6438
knockd 3 672 12 1108 7 773 12 1007 52 1302 12 478
httping 4 140 28 4209 356 165 28 4143 2992 373 28 3988

removing 225.4 functions. Full-CS clones 608 functions while re-
moving 107.5 functions. It can be noticed that Sparse-CS removes
more functions than CI and Full-CS and clones 2x more than CI
but 6X less than Full-CS. Another useful metric here is the ratio
of instructions cloned to instructions removed (IC/IR) which can
be used to measure how profitable instruction cloning is across
the three analysis modes (CI, Sparse-CS, Full-CS). On average
across benchmarks, CI requires 0.13 instruction clones to remove
1 instruction, Sparse-CS requires 0.06 and Full-CS requires 0.15.
The (IC/IR) stats further confirms our hypothesis that context-
sensitive analysis for a subset of variables reduces the amount of
instruction clones required while achieving similar code removal.
The high (IC/IR) ratio for Full-CS shows that unnecessary high
count of instruction clones were created during specialization.

Impact on Analysis Time. The overall tool analysis time
is mostly spent in 2 phases: configuration annotations and con-
stant propagation (other phases have low cost). Figure 9a shows
analysis times for configuration annotations pass on each bench-
mark. Note that this pass is independent of the level of context-
sensitivity, since configuration annotations would be the same for
each mode.

For 13 programs (relatively smaller-sized in terms of LOC),
this step is fast; consuming less than 30 seconds. The largest three
programs (gprof, yices, and objdump) show a non-linear increase
in analysis-time with increasing program size. The reason for the
non-linear increase is the cubic time complexity of Anderson’s
pointer analysis [36] which is used in the value-flow graph
construction phase. Overall, the configuration annotation analysis
consumes a (geometric) mean execution time of 29 seconds, with
a minimum of 0.7 seconds (dnsproxy) and a maximum of 2482
seconds (objdump).

Figure 9b compares the analysis time for our custom constant
propagation pass across the three modes CI, Sparse-CS, and Full-
CS. For 6 programs, CI provides the lowest analysis times, while
for the other 14 programs, Sparse-CS is the fastest. Full-CS is
slowest in all cases (except mini httpd, thttpd and curl; where CI
is the slowest). Across benchmarks, CI has a (geometric) mean
analysis time of 19.2 seconds, with a minimum of 0.50 seconds
(knockd), and a maximum of 3800 seconds (curl). Sparse-CS has

a geometric mean analysis time of 12 seconds, with a minimum of
0.40 seconds (knockd), and a maximum of 1210 seconds (curl).
Full-CS analysis has a geometric mean of 31 seconds, with a
minimum of 0.60 (knockd), and a maximum of 2693 seconds
(curl). Hence, Sparse-CS analysis performs on average 1.6x faster
than CI, and 2.6x faster than Full-CS. These results show that
Sparse-CS has comparable analysis times to CI, while providing
significantly improved code size reductions (22.7% compared to
10.9%).

Overall, we find that program size is only loosely related to
analysis times. The analysis time is dependent on a number of
factors including (but not limited to): a) program paths visited
in the analysis, b) number of control-flow merges that require
merging the memory context, and c) amount of loop unrolling
(which can increase cost for other transforms).

5.4 Impact on Performance.
To answer Q4 of our evaluation questions, we measure the effect
of program specialization on its performance. Figure 10 shows the
program performance after specialization compared to the perfor-
mance of the unspecialized program (unspecialized baseline is set
at 100% in the Figure). For 5 (out of 20) benchmarks, we observe
performance improvements greater than 5%, for 2 (aircrack-ng,
netperf) benchmarks, TRIMMER achieves improvements higher
than 20%, with the highest speedup of 53% (aircrack-ng). These
speedups are a result of optimizing the hot path of execution
due to code optimizations enabled by specialization. For instance,
constant folding in hot program loops can reduce loop processing
times; resulting in faster execution. For the rest of the programs,
we either see no noticeable changes, or very minor slowdowns
(possibly due to the unpredictable nature of how compiler trans-
forms interact).

5.5 Impact on Security
We believe that debloating is consistent with improving software
security. Reducing functionality limits the potential attack targets
in the application [11], [12]. If a vulnerability is discovered in a
piece of code, system administrators need to apply one or more

15

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200
A

n
a

ly
si

s
T

im
e

(s
e

co
n

d
s)

1415 2481979

(a) Time taken for configuration annotations pass.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

A
n

a
ly

si
s

T
im

e
(s

e
co

n
d

s)

CI Sparse-CS Full-CS

3800

(b) Time taken for constant propagation pass in CI, Full-CS, and
Sparse-CS modes

Fig. 9: Analysis time for the configuration annotations pass and
constant propagation pass. Most of the overall analysis time in
TRIMMER is consumed in these two passes.

software patches. When these updates are applied to networked
systems, the resulting downtime can impose significant costs at
both the client users and the service vendors [37]. Moreover, when
the software in question is deployed on devices in the field without
network connectivity, updating it may require a human to visit the
installation, a costly proposition. In contrast, if the program had
been debloated, the vulnerability may have been in functionality
that was eliminated. In such cases, the cost of updating does not
need to be incurred. While debloating does not eliminate the need
for existing security defenses, it reduces the amount of code that
needs protection. Moreover, restricting an application to specific
usage scenarios reduces the possible behaviors of a program. This
allows improved reasoning about software security.

Vulnerabilities in unused code become active points for ex-
ploitable weaknesses [38]. Such vulnerabilities can be potentially
exploited via code reuse attacks [39], [40] that can jump to
arbitrary locations in the code. Since debloating removes unused

0

20

40

60

80

100

120

E
xe

cu
ti

o
n

 T
im

e
 a

s
P

e
rc

e
n

ta
ge

 o
f

B
a

se
li

n
e

Baseline(-O3) Trimmer

Fig. 10: Benchmark performance improvements after TRIMMER

specialization.

code from the target binary, it can reduce the attack surface by
pruning code that contains exploitable vulnerabilities. To answer
Q5 of our evaluation questions, we identify known common
vulnerabilities and exposures (CVEs) that are removed by debloat-
ing the programs evaluated with configurations described in the
previous section (i.e., Section 5.1). Each CVE is given a severity
score according to the Common Vulnerability Scoring System [41]
which depends on the ease of the exploit and the impact of the
exploit. The severity score ranges from 0 to 10, with 10 being the
most severe.

For 9 of the 20 evaluated programs, there have been vulner-
abilities reported across different software versions. For 4 of the
9 programs with reported vulnerabilities, we found a total of 5
CVEs that were eliminated by debloating with TRIMMER. For the
other programs, most vulnerabilities manifest in core functionality.
Hence, these were not eliminated. We describe the CVEs that were
removed below:

CVE-2009-4490: CVE-2009-4490 is an execute code vulner-
ability in mini httpd version 1.19 that occurs when it optionally
writes to a log file without properly sanitizing non-printable char-
acters, which might allow attackers to modify or execute arbitrary
commands or even overwrite, via an HTTP request containing an
escape sequence. Since we specialized mini httpd with logging
disabled, the code for logging was fully pruned and hence the
vulnerability corresponding to it was eliminated. This CVE is the
only vulnerability present in this version of mini httpd and has a
severity score of 5.0.

CVE-2010-0001: gzip has an integer underflow vulnerabililty
with CVE ID 2010-001. The integer underflow occurs in the
unlzw function in unlzw.c before versions 1.4 on 64-bit plat-
forms. This vulnerability allows attackers to cause an application
crash (denial of service) or possibly execute arbitrary code via
a crafted archive. Since we specialize gzip for compression and
decompression separately, this vulnerability is eliminated (since
the affected function is removed) from the binary specialized for
compression. While decompression is a core functionality of gzip,
it may not be invoked in all usage contexts of the tool.

Similarly, removing decompression functionality from gzip
removes CVE-2009-2624 by pruning functions that lead to a

16

readelf

httping

yices

gprof

objdump

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000

M
e

m
o

ry
 C

o
n

su
m

e
d

 (
G

B
s)

Lines of Code (K)

Fig. 11: Peak Memory Consumption by TRIMMER with respect to
Lines of Code

denial of service exploit. These two CVEs are the only CVEs
present in this version of gzip and have a severity score of 6.8.

CVE-2010-0405: Integer overflow in the BZ2_decompress
function in decompress.c in bzip2 and libbbzip2 before 1.0.6
allows a denial of service attack. This vulnerability is present in
the decompression functionality. Similar to gzip, we transformed
bzip2 to create specialized binaries for compression and decom-
pression. The version specialized for compression excludes this
vulnerability. This CVE is the only vulnerability present in this
version of bzip2 and has severity score of 5.1.

CVE-2017-7209: The dump_section_as_bytes func-
tion in readelf-2.28 accesses a NULL pointer while reading section
contents, which can lead to a program crash. By specializing
readelf for a common usage scenario (i.e., the –all option), the
affected function is removed. This eliminates the vulnerability.
This CVE has severity score of 4.3.

5.6 Scalability of Analyses
We evaluate the peak memory consumption of TRIMMER analyses
across the different programs with the goal of finding out if our
analyses are feasible in terms of memory usage (Q6 of our eval-
uation questions). For measuring memory usage, we use Massif,
a tool in the valgrind suite. Figure 11 shows peak memory (Y-
axis) consumed by TRIMMER, for the 5 applications with highest
memory usage (others omitted for readability) and relates it to the
program size in terms of lines of code (X-axis). Unsurprisingly,
the memory usage is highest for the largest program, objdump,
consuming 8.7GB of memory. For yices and gprof, memory usage
is 5.4GB and 7.2GB respectively. For all other programs, memory
usage is below 2GB. A major fraction of memory is consumed as
part of the SVF code (third party tool) that is invoked for value-
flow graph construction used by the configuration annotations
transform. This indicates that to scale to larger programs, efficient
strategies for value-flow graph construction are important (and are
beyond the scope of this work).

Limiting Tracked Values: To control memory usage during
constant propagation, we provide an option, trackedPercent, to
limit the percentage of tracked values. This option is useful for
programs that require maintenance of large amounts of shadow

memory. Reducing the tracked values limits the number of con-
texts that need to be maintained simultaneously, thus reducing
the memory consumed during constant propagation. To maximize
coverage of constant propagation, we select values with the highest
number of loads dependent on them. This is done by sorting
the list of tainted values by the number of loads dependent on
them and considering only the specified percentage of values from
the top for tracking.The trackedPercent option was not needed in
any of our benchmark programs. However, we tested its utility
on a larger program (with a baseline binary size of 5.1MB),
Imagemagick [42]. Imagemagick is a tool for creating, editing, and
converting digital images. We specialized it for image conversion,
but the specialization could not complete on our test machines
due to a memory explosion caused by the shadow memory
kept during constant propagation. This was fixed by limiting the
annotated values (setting trackedPercent = 50%). With this, the
specialization completed, consuming less than 2 GB of memory
in the process. The specialization resulted in a working binary and
achieved a code size reduction of 10.72%.

6 THREATS TO VALIDITY

Dependence on Configuration Set: The results obtained in our
evaluation regarding code size reduction, attack space reduction
and performance are specific to our choice of configuration (per
application). With different choices of configurations, the code
size reductions and overall achievable benefits (performance, se-
curity) are expected to change (may be higher or lower).

Dependence on LLVM version: Our evaluation results for
both code size reductions and performance improvements are
specific to our choice of LLVM version (LLVM-7). The trans-
formations and their orderings in LLVM optimization levels differ
across versions. Due to this, the code size reductions are expected
to change when using a different LLVM version with TRIMMER.

7 LIMITATIONS

There are a few limitations of our analysis. We discuss these along
with potential proposals for addressing them.

Static Configuration: TRIMMER works under the assumption
that the configuration parameters are statically configured once,
and the parameters will not change during program execution. If
a user desires to change configuration parameters, the application
would need to be re-specialized for the updated configuration.
TRIMMER also assumes that configuration files are read-only and
assumes that there are no intervening file writes. It doesn’t reason
about scenarios where the file path to one of the configuration files
is dynamically loaded and the file is written-to. In our experience,
we do not find this to be a common scenario since configuration
files are mostly opened in read-only mode.

Process Creation: TRIMMER terminates analysis on process
creation calls such as fork since it cannot reason about constants
across different address spaces.

Lack of Function Devirtualization: TRIMMER currently does
not include support for devirtualizing indirect calls (especially
common in C++ code). This forces TRIMMER to make conser-
vative assumptions about memory side-effects, therefore limiting
constant propagation and dead code elimination. As part of future
work, we believe that incorporating support for precise call-graph
construction will enable support for a wider range of programs.

17

8 RELATED WORK

Static Analysis based approaches. Smowton et al. [43] proposed
LLPE, a LLVM-based partial evaluator that specializes programs
with respect to runtime configuration arguments and files. Starting
from the program entry-point, it evaluates each instruction and
calculates its results if its arguments are known, symbolically
executing instructions over a domain of constants, symbolic point-
ers and symbolic file descriptors. Symbolic execution has known
limitations in scaling to large programs and it is not complete when
analyzing loops, resulting in the requirement to sometimes keep
unspecialized versions of functions. LLPE is primarily focused on
improving performance (not code size reduction), and hence this is
a reasonable tradeoff for that use case. TRIMMER, in comparison,
uses static analysis with a byte-wise arranged concrete memory
model to evaluate each instruction. Moreover, in practice, LLPE
often requires an interactive process with the developer in the loop
guiding the analysis by manually specifying different entry-points
(other than ‘main‘ function) for specialization. In comparison,
TRIMMER is designed to be fully automated in its analysis.
Although LLPE is open-source and publicly available, we did
not use it for quantitative analysis since we found that it requires
significant manual intervention to correctly specialize a program
(i.e., no correctness bugs arising from specialization).

Malecha et al. [8] proposed OCCAM, a partial evaluator
that specializes programs with respect to constant command-line
inputs. OCCAM uses abstract interpretation-based static analysis
for dead code elimination. Specifically, OCCAM uses interval
analysis on SSA values (in LLVM) and uses these to remove
provably dead code branches (and code downstream). OCCAM
also uses SeaDSA’s [44] (context- and field-sensitive) points-to
analysis to compute precise call-graphs. OCCAM’s default mode
does not provide machinery for constant propagation of memory
contents beyond standard LLVM optimizations. Its static analysis
does not support specialization with respect to configuration files
or custom handling for tracking constants through command line
and string processing functions, as TRIMMER does. Our evaluation
showed that OCCAM is less effective in achieving code size
reductions. Overall, OCCAM and TRIMMER include strategies
that are complementary to each other. The precise call-graph
construction in OCCAM and support for interval analysis can be
combined with TRIMMER to improve code size reductions.

Ghavamnia et al. [45] present a novel temporal specialization
approach to remove exploitable system calls at program phases
beyond which the calls are unlikely to be used. For instance,
execve calls are commonly exploited in code-reuse attacks,
and should be made unavailable to the process beyond programs
phases where the call is typically used (usually at initialization).
Since many of these calls are made via indirect function invo-
cations with potentially many targets, the authors also propose
approaches that remove spurious edges from the derived program
call-graph with the goal of improving the analysis precision.

Dynamic analysis based approaches
CHISEL [12] uses learning-based delta debugging for program

debloating. It takes as input a program to be debloated and a high-
level specification of its functionality to be retained; the rest of
the functionality is considered for debloating. The specification is
a developer-specified script that includes test cases which should
preserve correctness (test case results) after some subset of code
(chosen by the tool) is removed. For reasonably sized programs,
such a specification mechanism can be burdensome and error-

prone since multiple test cases may either need to be carefully
selected from an existing test suite or developed from scratch.

Landsborough et al. presented two different approaches to
code debloating. The first approach uses a dynamic execution-
trace of the program to identify unused blocks of code and then
replaces these code blocks with NOP instructions. The other
approach uses a genetic algorithm to create multiple mutated
versions of the program with each mutation removing potentially
unused instructions. Each version is then ranked according to
a fitness function that evaluates if this version passes the user-
specified test cases. Like CHISEL, this approach relies entirely on
developer-provided test cases and does not provide any guarantees
for scenarios/inputs not covered in the test suite.

Qian et al. [46] propose a debloating framework, RAZOR, that
performs code debloating on the program binary, not requiring
source code. It utilizes a set of test cases and control-flow-based
heuristics to identify code functions and code blocks that are
required to support user-expected functionalities. This approach
is useful when program source code is not available. However, a)
the lack of source code (or program in IR form) limits potential
for program analysis since many high-level program constructs are
lost in translation to the program binary, and b) this approach also
requires developers to provide extensive test cases.

Kurmus et al. [2] use the kernel source and run-time traces
to derive a kernel configuration that includes the minimal features
that are exercised in the runtime trace collection phase. This kernel
configuration is used to recompile the kernel disabling the unused
features, resulting in a smaller kernel footprint. TRIMMER pro-
vides specialization opportunities at a finer granularity (function,
loop, instruction level) compared to what is usually enabled by
compile-time configurations. As part of future work, we believe
there is potential for using such compile-time configuration spe-
cialization approaches with improved constant propagation trans-
forms in TRIMMER to achieve higher code size improvements.

Debloating libraries. Quanch et al. [11] use a combination
of static and dynamic analyses to eliminate unused functions
from libraries at load-time. First, the tool uses static analysis to
construct a function-level dependency graph that is appended to
the binary header (ELF section). Then a custom system loader
uses this dependency graph to prune-out routines (zeroes out
corresponding memory pages) that are unused with respect to the
external symbol dependencies of the target program.

BlankIt [47] reduces the program attack surface by lazily
loading external library functions based on a predictor that predicts
the external library calls likely to be invoked at different program
points. The predictor used is a decision tree that is embedded in the
program binary and has low runtime overhead. The predictor uses
the function arguments, and other attributes to predict the external
functions callable within an internal function. The approach allows
for loading the minimal subset of library functions needed and
hence reduces exploitable vulnerabilities.

Other tools debloat library code using static and/or dynamic
analyses [48], [49], [50], [51]. Our approach to program de-
bloating is complementary to these techniques and TRIMMER can
be potentially combined with these systems. Removing unused
application features can create more opportunities for removing
unused library interfaces.

Configuration Analysis. Lotrack [52] analyzes application
source given configuration options, and uses static taint analysis
to identify code fragments that are invoked conditional on the
values of these configuration options. The goal of this tool is to

18

assist developer understanding and is not used for code debloating,
though it has potential for being used similar to our custom
analysis for identifying configuration-hosting variables. Similarly,
Siegmund et al. [53] proposed a method for predicting the foot-
print and memory consumption of a software’s non-functional
components. This approach only predicts the memory footprint
added by different features and is not a tool for code debloating.

9 CONCLUSION

We introduced TRIMMER, an application specialization tool that
debloats unused functionality by specializing programs for user-
specified configuration options. We proposed sparse context-
sensitive analysis for effective constant propagation in reasonable
times. Sparse constant propagation performs constant propagation
for configuration-hosting program variables and memory objects
that are identified through an analysis pass. Our results demon-
strate that our tool effectively optimizes binary sizes for real-world
programs. Overall, we observe a mean size reduction of 22.7%
across 20 evaluated programs.

10 ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation (NSF) under Grant ACI-1440800 and the
Office of Naval Research (ONR) under Contract N68335-17-C-
0558. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or ONR.

REFERENCES

[1] T. Kroes, A. Altinay, J. Nash, Y. Na, S. Volckaert, H. Bos, M. Franz, and
C. Giuffrida, “Binrec: Attack surface reduction through dynamic binary
recovery,” in 3rd ACM Workshop on Forming an Ecosystem Around
Software Transformation, 2018.

[2] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg,
A. Ruprecht, W. Schröder-Preikschat, D. Lohmann, and R. Kapitza,
“Attack surface metrics and automated compile-time os kernel tailoring,”
in 20th Network and Distributed System Security Symposium, 2013.

[3] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky, “Software
bloat analysis: Finding, removing, and preventing performance problems
in modern large-scale object-oriented applications,” in FSE/SDP Work-
shop on Future of software engineering research, 2010.

[4] S. Bhattacharya, K. Gopinath, K. Rajamani, and M. Gupta, “Software
bloat and wasted joules: Is modularity a hurdle to green software?”
Computer, vol. 44, no. 9, 2011.

[5] G. Muller, R. Marlet, E.-N. Volanschi, C. Consel, C. Pu, and A. Goel,
“Fast, optimized sun rpc using automatic program specialization,” in 18th
International Conference on Distributed Computing Systems, 1998.

[6] S. Bhatia, C. Consel, A.-F. Le Meur, and C. Pu, “Automatic special-
ization of protocol stacks in operating system kernels,” in 29th IEEE
International Conference on Local Computer Networks, 2004.

[7] S. Bhatia, C. Consel, and C. Pu, “Remote specialization for efficient
embedded operating systems,” ACM Transactions on Programming Lan-
guages and Systems, vol. 30, no. 4, 2008.

[8] G. Malecha, A. Gehani, and N. Shankar, “Automated software winnow-
ing,” in 30th ACM Symposium on Applied Computing, 2015.

[9] V. Rastogi, C. Niddodi, S. Mohan, and S. Jha, “New directions for con-
tainer debloating,” in 2nd Workshop on Forming an Ecosystem Around
Software Transformation, 2017.

[10] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel, “Cim-
plifier: Automatically debloating containers,” in 11th Joint Meeting on
Foundations of Software Engineering, 2017.

[11] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-
wise compilation and loading,” in 27th USENIX Security Symposium,
2018.

[12] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program
debloating via reinforcement learning,” in 25th ACM SIGSAC Conference
on Computer and Communications Security, 2018.

[13] M. D. Brown and S. Pande, “Is less really more? towards better metrics
for measuring security improvements realized through software debloat-
ing,” in 12th USENIX Workshop on Cyber Security Experimentation and
Test, 2019.

[14] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “Trimmer: application
specialization for code debloating,” in 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018.

[15] C. Hibbs, S. Jewett, and M. Sullivan, The art of lean software devel-
opment: a practical and incremental approach. O’Reilly Media, Inc.,
2009.

[16] H. Lekatsas and W. Wolf, “Code compression for embedded systems,” in
35th Annual Design Automation Conference, 1998.

[17] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in
llvm,” in 25th International Conference on Compiler Construction, 2016.

[18] O. Danvy, “Type-directed partial evaluation,” in Partial Evaluation, 1999.
[19] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and

automatic program generation. Peter Sestoft, 1993.
[20] K. Cooper and L. Torczon, Engineering a compiler. Elsevier, 2011.
[21] “LoopRotate] Add support for rotating loops with switch exit,” https:

//reviews.llvm.org/D72420.
[22] “mini httpd,” https://acme.com/software/mini httpd/.
[23] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging

system for log processing,” in 6th Workshop on Networking Meets
Databases, 2011.

[24] S. Choudhuri and R. N. Mahapatra, “Energy characterization of filesys-
tems for diskless embedded systems,” in 41st Design Automation Con-
ference, 2004.

[25] “sans,” https://github.com/puxxustc/sans.
[26] “totd,” http://www.dillema.net/software/totd.html.
[27] J. Poskanzer, “thttpd - tiny/turbo/throttling httpserver,” https://acme.com/

software/thttpd/.
[28] “bzip2,” https://linux.die.net/man/1/bzip2.
[29] T. Lu, W. Xia, X. Zou, and Q. Xia, “Adaptively compressing iot data on

the resource-constrained edge,” in 3rd USENIX Workshop on Hot Topics
in Edge Computing, 2020.

[30] [Online]. Available: https://linux.die.net/man/1/gzip
[31] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. Wasi-ur Rahman,

N. S. Islam, X. Ouyang, H. Wang, S. Sur et al., “Memcached design on
high performance rdma capable interconnects,” in International Confer-
ence on Parallel Processing. IEEE, 2011, pp. 743–752.

[32] B. Dutertre, “Yices 2.2,” in Computer Aided Verification. Springer,
2014, pp. 737–744.

[33] E. Clarke, M. Talupur, H. Veith, and D. Wang, “Sat based predicate
abstraction for hardware verification,” in Theory and Applications of
Satisfiability Testing. Springer, 2003, pp. 78–92.

[34] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in 8th
USENIX Symposium on Operating Systems Design and Implementation,
2008.

[35] “Everthing curl.” [Online]. Available: https://everything.curl.dev/
[36] L. O. Andersen, “Program analysis and specialization for the c program-

ming language,” Ph.D. dissertation, University of Cophenhagen, 1994.
[37] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy,

“Early detection of configuration errors to reduce failure damage,” in 12th
USENIX Symposium on Operating Systems Design and Implementation,
2016.

[38] A. Quach, R. Erinfolami, D. Demicco, and A. Prakash, “A multi-os cross-
layer study of bloating in user programs, kernel and managed execution
environments,” in 2nd ACM Workshop on Forming an Ecosystem Around
Software Transformation, 2017.

[39] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in 14th ACM Conference on
Computer and Communications Security, 2007.

[40] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented pro-
gramming: A new class of code-reuse attack,” in 6th ACM Symposium
on Information, Computer and Communications Security, 2011.

[41] “Common vulnerability scoring system sig.” [Online]. Available:
https://www.first.org/cvss/

[42] “imagemagick,” https://imagemagick.org/index.php.
[43] C. Smowton and S. Hand, “make world,” in 13th USENIX Workshop on

Hot Topics in Operating Systems, 2011.
[44] “SeaDSA,” https://github.com/seahorn/sea-dsa.
[45] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal

system call specialization for attack surface reduction,” in 29th USENIX
Security Symposium, 2020.

https://reviews.llvm.org/D72420
https://reviews.llvm.org/D72420
https://acme.com/software/mini_httpd/
https://github.com/puxxustc/sans
http://www.dillema.net/software/totd.html
https://acme.com/software/thttpd/
https://acme.com/software/thttpd/
https://linux.die.net/man/1/bzip2
https://linux.die.net/man/1/gzip
https://everything.curl.dev/
https://www.first.org/cvss/
https://imagemagick.org/index.php
https://github.com/seahorn/sea-dsa

19

[46] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee, “RAZOR:
A framework for post-deployment software debloating,” in 28th USENIX
Security Symposium, 2019.

[47] C. Porter, G. Mururu, P. Barua, and S. Pande, “Blankit library debloating:
Getting what you want instead of cutting what you don’t,” in 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020.

[48] C. Mulliner and M. Neugschwandtner, “Breaking payloads with runtime
code stripping and image freezing,” Black Hat USA, 2015.

[49] I. Agadakos, D. Jin, D. Williams-King, V. Kemerlis, and G. Portokalidis,
“Nibbler: Debloating binary shared libraries,” in 35th Annual Computer
Security Applications Conference, 2019.

[50] A. Ziegler, J. Geus, B. Heinloth, T. HÖnig, and D. Lohmann, “Honey,
i shrunk the elfs: Lightweight binary tailoring of shared libraries,” ACM
Transactions on Embedded Computing Systems, vol. 18, no. 5s, 2019.

[51] N. Davidsson, A. Pawlowski, and T. Holz, “Towards automated
application-specific software stacks,” in 24th European Symposium on
Research in Computer Security, 2019.

[52] M. Lillack, C. Kästner, and E. Bodden, “Tracking load-time configuration
options,” IEEE Transactions on Software Engineering, vol. 44, no. 12,
2017.

[53] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and
S. Kolesnikov, “Scalable prediction of non-functional properties in soft-
ware product lines: Footprint and memory consumption,” Information
and Software Technology, vol. 55, no. 3, 2013.

Aatira Anum Ahmad has completed her Mas-
ter’s and is pursuing a Doctorate in Com-
puter Science, both at Lahore University of
Management Sciences. Her research inter-
ests are compilers and program analysis.

Abdul Rafae Noor is currently a Computer
Science Ph.D. student in the LLVM group at
the University of Illinois, Urbana-Champaign.
His research interests include generating
and optimizing hardware-agnostic code for
heterogeneous parallel systems.

Hashim Sharif completed his Ph.D. and is
now a Postdoctoral Fellow, both at the Uni-
versity of Illinois, Urbana-Champaign. His re-
search experiences include internships at
SRI International and Argonne National Lab-
oratory. Hashim is enthusiastic about build-
ing compiler infrastructure that improves
performance and reduces energy usage on
resource-constrained systems. His research
interests include compilers, static analysis,
approximate computing, and deep learning.

Usama Hameed received his Bachelor’s in
Computer Science from Lahore University of
Management Sciences. He is pursuing his
Ph.D. at University of California, Los Ange-
les. His research interests include Compilers,
Software Engineering, and Static Analysis.

Shoaib Asif is a Ph.D. student at University of
Texas, Austin. He is involved in two research
projects that focus on debloating software.
He is interested in using program analysis to
solve security challenges.

Mubashir Anwar received his undergraduate
degree at Lahore University of Management
Sciences. He has joined the Ph.D. program at
the University of Illinois, Urbana-Champaign.
His research interests include static analy-
sis, software-defined networking, and edge-
computing.

Ashish Gehani is a Principal Computer Sci-
entist at SRI. His research interests are data
provenance and security. He holds a Ph.D. in
Computer Science from Duke University and
a B.S. in Mathematics from the University of
Chicago.

Fareed Zaffar is an Associate Professor of
Computer Science at Lahore University of
Management Sciences. His primary research
interests are in the areas of security, privacy,
and internet measurement. His recent work
has focused on social networks, online fraud,
and cybercrime. He has also done exten-
sive work in enabling public sector reform
through the use of information and communi-
cation technologies. His work has been sup-
ported by HEC, Facebook, USAID, NIH Pak-

istan, GIZ, UNODC, European Union, USIP, Adam Smith Interna-
tional, and UNICEF, among others.

20

Junaid Haroon Siddiqui is an Associate Pro-
fessor of Computer Science at Lahore Uni-
versity of Management Sciences. Previously,
he received Ph.D. in Computer Science from
University of Texas, Austin, and M.S. and B.S.
in Computer Science from FAST-NUCES. His
research interests include program analysis
using static and dynamic techniques in auto-
matic software test generation, parallel and
incremental techniques in scaling algorithms
for multicore processors, and the intersec-

tion of these domains.

	Introduction
	Trimmer
	Contributions
	Motivation for Code Specialization

	System Workflow
	Configuration Annotations
	Entry-point Specialization
	Loop Unrolling
	File I/O Specialization
	Constant Propagation

	Soundness of Transformations
	Experimental Setup
	Benchmarks
	Comparisons for Code Size Reduction.
	Performance and Analysis Time Evaluations.
	Heuristics used to Limit Function Cloning.
	Testing of Specialized Binaries

	Evaluation
	Impact on Code Size
	Comparison with OCCAM
	Impact of Varying Context-Sensitivity
	Impact on Performance.
	Impact on Security
	Scalability of Analyses

	Threats to Validity
	Limitations
	Related Work
	Conclusion
	Acknowledgements
	References
	Biographies
	Aatira Anum Ahmad has completed her Master's and is pursuing a Doctorate in Computer Science, both at Lahore University of Management Sciences. Her research interests are compilers and program analysis.
	Abdul Rafae Noor is currently a Computer Science Ph.D. student in the LLVM group at the University of Illinois, Urbana-Champaign. His research interests include generating and optimizing hardware-agnostic code for heterogeneous parallel systems.
	Hashim Sharif completed his Ph.D. and is now a Postdoctoral Fellow, both at the University of Illinois, Urbana-Champaign. His research experiences include internships at SRI International and Argonne National Laboratory. Hashim is enthusiastic about building compiler infrastructure that improves performance and reduces energy usage on resource-constrained systems. His research interests include compilers, static analysis, approximate computing, and deep learning.
	Usama Hameed received his Bachelor's in Computer Science from Lahore University of Management Sciences. He is pursuing his Ph.D. at University of California, Los Angeles. His research interests include Compilers, Software Engineering, and Static Analysis.
	Shoaib Asif is a Ph.D. student at University of Texas, Austin. He is involved in two research projects that focus on debloating software. He is interested in using program analysis to solve security challenges.
	Mubashir Anwar received his undergraduate degree at Lahore University of Management Sciences. He has joined the Ph.D. program at the University of Illinois, Urbana-Champaign. His research interests include static analysis, software-defined networking, and edge-computing.
	Ashish Gehani is a Principal Computer Scientist at SRI. His research interests are data provenance and security. He holds a Ph.D. in Computer Science from Duke University and a B.S. in Mathematics from the University of Chicago.
	Fareed Zaffar is an Associate Professor of Computer Science at Lahore University of Management Sciences. His primary research interests are in the areas of security, privacy, and internet measurement. His recent work has focused on social networks, online fraud, and cybercrime. He has also done extensive work in enabling public sector reform through the use of information and communication technologies. His work has been supported by HEC, Facebook, USAID, NIH Pakistan, GIZ, UNODC, European Union, USIP, Adam Smith International, and UNICEF, among others.
	Junaid Haroon Siddiqui is an Associate Professor of Computer Science at Lahore University of Management Sciences. Previously, he received Ph.D. in Computer Science from University of Texas, Austin, and M.S. and B.S. in Computer Science from FAST-NUCES. His research interests include program analysis using static and dynamic techniques in automatic software test generation, parallel and incremental techniques in scaling algorithms for multicore processors, and the intersection of these domains.

