
TRIMMER: Application Specialization for Code Debloating
Hashim Sharif

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, USA
hsharif3@illinois.edu

Muhammad Abubakar
Department of Computer Science

Lahore University of Management Sciences
Lahore, Pakistan

bakar95@gmail.com

Ashish Gehani
Computer Science Laboratory

SRI International
Menlo Park, USA

ashish.gehani@sri.com

Fareed Zaffar
Department of Computer Science

Lahore University of Management Sciences
Lahore, Pakistan

fareed.zaffar@lums.edu.pk

ABSTRACT

With the proliferation of new hardware architectures and ever-
evolving user requirements, the software stack is becoming increas-
ingly bloated. In practice, only a limited subset of the supported
functionality is utilized in a particular usage context, thereby pre-
senting an opportunity to eliminate unused features. In the past,
program specialization has been proposed as a mechanism for en-
abling automatic software debloating. In this work, we show how
existing program specialization techniques lack the analyses re-
quired for providing code simplification for real-world programs.
We present an approach that uses stronger analysis techniques to
take advantage of constant configuration data, thereby enabling
more effective debloating. We developed Trimmer, an application
specialization tool that leverages user-provided configuration data
to specialize an application to its deployment context. The spe-
cialization process attempts to eliminate the application function-
ality that is unused in the user-defined context. Our evaluation
demonstrates Trimmer can effectively reduce code bloat. For 13
applications spanning various domains, we observe a mean binary
size reduction of 21% and a maximum reduction of 75%. We also
show specialization reduces the surface for code-reuse attacks by
reducing the number of exploitable gadgets. For the evaluated pro-
grams, we observe a 20% mean reduction in the total gadget count
and a maximum reduction of 87%.

CCS CONCEPTS

• Software and its engineering→ Compilers;

KEYWORDS

Static analysis, Code debloating, Program specialization, LLVM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238160

ACM Reference Format:

Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar.
2018. TRIMMER: Application Specialization for Code Debloating. In Proceed-
ings of the 2018 33rd ACM/IEEE International Conference on Automated Soft-

ware Engineering (ASE ’18), September 3–7, 2018, Montpellier, France. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3238147.3238160

1 INTRODUCTION

As hardware architectures and user requirements continue to evolve,
software platforms and applications are becoming increasingly com-
plex [33]. With such software growth, it is not surprising to see
applications becoming subject to feature creep. As a variant of the
80/20 rule, it has been argued that 80% of the users only utilize
20% of the functionality with each user requiring a distinct set
of features [24]. With most users demanding only a subset of the
complete functionality, feature extensions often come at the cost of
software bloat. Such code bloat may negatively impact performance,
while also potentially broadening the attack surface of the appli-
cation [7, 40, 52]. Moreover, software bloat is a first-class concern
in embedded systems hosted on resource-constrained devices with
limited memory and secondary storage capabilities [36].

Protocol stacks for embedded systems often need to be highly
customized in view of their target applications. This requires de-
velopers to manually identify and eliminate unused code from
the stack [35]. Such manual stripping of unnecessary features can
be a time-consuming and error-prone process. Alternatively, pro-
gram specialization techniques have been acknowledged as a useful
mechanism for automatic customization of software [41].

Conceptually, a specializer takes a target application and a spe-
cialization context as input, and produces a version of the applica-
tion specialized for the provided context. The specialization context
is composed of known data values and configuration parameters
available at compile time. Prior work has leveraged partial eval-
uation as a technique for program specialization [6, 16]. Partial
evaluation is an optimization technique that precomputes program
expressions in terms of the known static input, thereby generating
a specialized binary [28].

In this work, we show how existing partial evaluation mecha-
nisms are insufficient for providing useful program specialization
for real-world programs. Specifically, the current approaches for
automated specialization are not equipped with the analyses that
cater to the diverse programming patterns employed for reading

329

https://doi.org/10.1145/3238147.3238160
https://doi.org/10.1145/3238147.3238160

ASE ’18, September 3–7, 2018, Montpellier, France Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar

and parsing user configuration. Moreover, the absence of prop-
agating configuration invariants, coupled with the conservative
nature of existing optimizations in production compilers [17], limits
opportunities for constant folding and dead code elimination.

Accordingly, we have developed Trimmer, a tool that enables
configuration-based software slimming. Trimmer specializes a tar-
get program with respect to a user-defined configuration. The pro-
vided configuration specifies the usage context of the application in
the deployment of interest, and is leveraged to prune unused func-
tionality from the application. Our tool uses stronger techniques
to incorporate configuration information, and includes compiler
transformations tailored to take advantage of the known program
constants, thereby enabling effective debloating. Instead of relying
on heroic compiler analysis, we develop the necessary transforms
that enable effective propagation of configuration invariants. In
particular, we build an interprocedural constant propagation trans-
formation that is more precise, and hence facilitates the pruning of
program paths that are unreachable in the context of the user con-
figuration. The unreachable paths are pruned as a result of statically
evaluating branch conditions by leveraging the provably constant
data. Moreover, this potentially allows for pruning functions that
are invoked within the eliminated program path.

Additionally, we show existing transformations such as loop
unrolling can be applied more usefully in light of the known static
input. Our experiments show, by applying these additional trans-
forms, we achieve more precise constant propagation, as a result
enabling aggressive elimination of unused program code. The com-
piler transforms included in the tool are developed using the LLVM
compiler framework [34].

Our specific contributions can be summarized as follows:

• We develop an interprocedural constant propagation transfor-
mation that propagates the static program configuration more
precisely, and hence facilitates the pruning of unreachable code
paths.
• We develop a loop unrolling transformation to more aggressively
unroll loops. In particular, we leverage the improved constant
folding capabilities to better guide the cost models that drive the
loop unrolling transform. For the majority of programs, full loop
unrolling for certain loops (particularly input parsing loops) is a
prerequisite for any useful constant propagation.
• We present the results of an evaluation of our tool. Our experi-
ments demonstrate:
Reduced code size: For a set of 13 commonly used Linux appli-
cations, we observe a geometric mean binary size reduction of
21.1% and a maximum reduction of 75.4%.
Reduced attack surface: Code-reuse attacks use instruction
sequences (called gadgets) from executable code sections as the
attack payload. We show specialization introduces software di-
versity and reduces the number of exploitable gadgets. In our
evaluation, we observe specialization reduces the gadgets by
20.1% (on average). Moreover, for all our benchmarks, applying
specialization eliminates all surviving gadgets (at known byte
locations).

2 MOTIVATION

We discuss our motivations for application specialization.
Eliminating auxiliary program features: Prior studies have

shown a significant fraction of program features are rarely used [24].
We view this as an opportunity to eliminate the less commonly
used features by specializing applications to their core functionality.
In our experiments, we aim to select configurations that represent
the core functionality of the target applications while leaving out
the auxiliary features.

Reduced attack surface: Modern operating systems protect
against code injection attacks by preventing pages from being si-
multaneously executable and writable [49]. Code reuse attacks
circumvent these restrictions by using instruction sequences in the
executable sections as the attack payload itself [10, 46]. These code
snippets, called gadgets, end in a return or jump instruction, thus
allowing an attacker to chain the execution of multiple gadgets [26].
As specialization eliminates unused program features, it reduces the
attack surface of the program by reducing gadgets. In our results,
we show a reduction in binary size correspondingly reduces the set
of program gadgets an attacker can exploit. To conduct a code reuse
attack, an attacker must have knowledge of the gadget locations
in the executable [32]. We show specialization introduces software
diversity, making it harder for attackers to gain insights about the
gadget locations in the target binary.

3 TRIMMER

In this section, we describe the workflow for our configuration-
based debloating tool Trimmer. For our implementation, we se-
lected the LLVM framework [34] since it provides frontends for
popular programming languages including C/C++, and supports
a wealth of compiler analyses and optimization passes that make
it suitable for developing new compiler transforms. Trimmer is
intended to be used with software that is compiled to LLVM bit-
code modules - bitstream container format for encoding LLVM
Intermediate Representation (IR). Figure 1 shows the workflow for
the proposed system.

The input to the tool is a manifest file that includes the user-
defined static configuration, and the path to awhole-program LLVM
bitcode file. The user-defined static configuration characterizes the
usage context of the application for a given deployment. Trimmer
specializes the target application modules with respect to this usage
context. Thewhole-program bitcode file consists of application code
that is compiled and linked into a single LLVM module.

Trimmer is composed of threemajor compiler transforms namely
input specialization, loop unrolling, and constant propagation. The
first phase of the tool workflow includes input specialization. In-
put specialization propagates the static configuration data into
the program via the program entry point. This, in turn, facilitates
simplifying program expressions dependent on these configura-
tion constants. Input specialization is described in more detail in
Section 3.1. Next in the pipeline is a loop unrolling pass that aggres-
sively unrolls loops to aid later optimization passes. We observe
that improved loop unrolling is necessary to facilitate effective in-
terprocedural constant propagation. The transform is discussed in
Section 3.2.

Once the configuration parameters are incorporated as program
invariants, they can be aggressively propagated throughout the

330

TRIMMER: Application Specialization for Code Debloating ASE ’18, September 3–7, 2018, Montpellier, France

Figure 1: Overview of the tool workflow. Inputs to the tool include a) a whole-program LLVM bitcode file, and b) a manifest file. The user-

defined configuration specified in the manifest is leveraged to generate a specialized binary.

program. Production compilers such as LLVM provide optimization
passes for constant propagation that enable this goal. However,
as LLVM optimizations tend to be conservative for purposes of
correctness and efficiency [2, 17], this leads to missed opportunities
for optimizing the code more aggressively in light of the statically
known values. Accordingly, we develop a more sophisticated inter-
procedural constant propagation transform that better propagates
the static configuration data throughout the program callgraph,
thereby enabling code simplification. The implementation of the
constant propagation optimization is described in more detail in
Section 3.3. As configuration data is incorporated and propagated,
existing compiler optimizations can be invoked later in the pipeline
to further attempt code simplification. Finally, the linker takes as
input the specialized bitcode and the linker flags (also read from
the manifest file), and generates a specialized binary executable.

3.1 Input Specialization

Applications parse user-provided configuration in a variety of dif-
ferent ways. Commonly, configuration is supplied as program ar-
guments and configuration files. While our tool includes transfor-
mations for incorporating command-line arguments, supporting
file-based configuration is not within the scope of the current work.
In practice, we observe a majority of applications include a wealth
of configurable command-line flags that can be exploited for spe-
cialization.

We describe our input specialization transform that leverages
partial evaluation concepts [18, 28]. The goal of this transform is
to incorporate user-defined constant inputs directly into the pro-
gram, therefore specializing the application for a specific usage
context. Later passes such as loop unrolling and constant propaga-
tion can leverage these constants to simplify program expressions,
consequently facilitating code debloating. Specifically, the trans-
form specializes the program entry point for the user-provided
input arguments. These static program arguments are provided as
part of the manifest file that is input to the specializer.

Algorithm 1 shows the algorithm for the input specialization
transform. The pass begins by reading the input arguments from
the manifest file. Then, for each constant argument specified in
the manifest, all original uses of the argument are substituted by
the known constant value. If a target argument is explicitly an-
notated as dynamic input (as part of the manifest), the original
uses remain unsubstituted. This is particularly useful, as it allows
users to specialize programs on a partially-specified set of constant
arguments.

As a practical example of input specialization, consider a network
monitoring tool that takes as input a particular network interface.

Algorithm 1: Algorithm for Input Specialization
1

2 Function inputSpecialization(manifestFile, programEntry)

3 inputArgs← readArgs(manifestFile);
4 programArgs← getProgramArgs(programEntry);
5 argIndex← 0;
6 foreach argValue in inputArgs do

7 if argValue is constant then

8 replaceArgUses(argValue, programArgs[argIndex]);
9 end

10 argIndex← argIndex + 1;
11 end

12

While the application may support multiple network interfaces, a
usage scenario may only require monitoring a specific interface
(e.g., Ethernet). Specializing the application for a particular interface
allows for pruning unused functionality, thus reducing code size.

3.2 Loop Unrolling

In this section, we introduce our loop unrolling transformation.
In the context of program specialization, we observe that loop un-
rolling is a necessary optimization. Unrolling is particularly impor-
tant for input parsing loops that extract the user-provided configu-
ration and store these values as program variables. Since unrolling
facilitates the folding of program expressions inside the loop body,
it supports constant propagation of the static configuration.

While LLVM includes a loop unrolling pass in the optimizations
suite, it is not entirely suited for our use case. Since the LLVM
unrolling pass is driven by conservative heuristics to estimate the
profitability of the loop unroll, it very often misses opportunities for
simplifying expressions in the loop body. Accordingly, we develop
a loop unrolling transform that leverages our improved constant
folding transform to more precisely determine the profitability of
unrolling a target loop. Specifically, the transform aggressively
unrolls loops and thereafter applies a cost model on the unrolled
loop. In the context of a specific loop, the cost model determines the
usefulness of the transform by identifying loop-based operations
that are simplified/folded as a result of the unrolling. Since the
transform relies on constant folding to drive the cost model, our tool
bundles the loop unrolling transform and the constant propagation
transform as one unified compiler pass. Constant propagation is
described in detail in Section 3.3.

Algorithm 2 illustrates the algorithm for the unrolling transfor-
mation. The tryToUnrollLoop procedure attempts to fully unroll
the provided target loop. First, the call to getLoopTripCount ex-
tracts the trip count for the loop. If the loop trip count can be
statically determined as a constant value, the loop is fully unrolled.

331

ASE ’18, September 3–7, 2018, Montpellier, France Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar

Algorithm 2: Algorithm for Loop Unrolling
1

2 Function tryToUnrollLoop(loop)

3 tripCount← getLoopTripCount(loop);
4 if isConstant(tripCount) then

5 unrolledLoop← unrollLoop(loop, tripCount);
6 runConstProp(unrolledLoop);
7 unrollCost← evaluateCost(unrolledLoop);
8 if unrollCost > costThreshold then

9 rerollLoop(unrolledLoop, tripCount);
10 end

11 end

12 if not isConstant(tripCount) then

13 peeledLoop← peelLoop(loop, peelCount);
14 runConstProp(peeledLoop);
15 if isFullyUnrolled(peeledLoop) then

16 unrollCost← evaluateCost(peeledLoop);
17 if unrollCost > costThreshold then

18 rerollLoop(peeledLoop, tripCount);
19 end

20 else

21 rerollLoop(peeledLoop, tripCount);
22 end

23 else

24 end

Figure 2a: The example parsing routine extracts the command-line

options in a loop.

void parse_input(int argc, char *argv[], struct Config *config){
while ((int c = getopt (argc, argv, "pd")) != -1){
switch (c){
case 'p': config->enable_plugins = false; break;
case 'd': config->enable_debug = false; break;

}
}

}

Once the loop body is fully unrolled, it allows for precisely determin-
ing the usefulness of the unroll. After unrolling, the runConstProp
procedure runs a constant propagation pass on the unrolled loop.
The purpose of invoking the constant propagation pass is to facili-
tate simplification of the unrolled loop expressions. Subsequently,
evaluateCost leverages a cost model to compute the cost associ-
ated with unrolling the target loop. Since unrolling certain loops
can potentially increase code size, it is necessary to evaluate the
benefit of unrolling and skip unrolling if it does not assist constant
folding of loop-oriented expressions. evaluateCost determines the
fraction of instructions simplified as a result of applying constant
propagation on the unrolled loop and accordingly computes a cost
value. If no or few instructions are simplified/folded, the cost model
returns a high cost value. If the cost model returns a high cost
associated with the unroll, the unrolled loop is rerolled to regen-
erate the original loop. If the loop trip count is non-constant, the
peelLoop procedure is invoked to peel the first few iterations of the
loop. Subsequently, runConstProp invokes constant propagation
to promote constant folding of expressions in the peeled iterations.
Applying constant propagation on the peeled loop iterations po-
tentially allows for statically evaluating the loop exit conditions,
thereby assisting a full unroll. If the loop is not fully unrolled, it
cannot promote further constant propagation, and hence, the loop
is rerolled.

Figure 2b: The parsing loop is fully unrolled.

void parse_input(int argc, char *argv[], struct Config *config){
int option = 'p'; // getopt() replaced
switch (option){
case 'p': config->enable_plugins = false; break;
case 'd': config->enable_debug = false; break;

}
option = 'd'; // getopt() replaced
switch (option){
case 'p': config->enable_plugins = false; break;
case 'd': config->enable_debug = false; break;

}
}

}

Figure 2c: The unrolled getopt calls are folded to corresponding con-
stant values.

void parse_input(int argc, char *argv[], struct Config *config){
config->enable_plugins = false;
config->enable_debug = false;

}

Figure 2a shows an input parsing routine that reads the input
arguments in a getopt loop and sets the program configuration
variables accordingly. For purposes of illustration, we assume that
the static program input includes two command-line flags, p and d.
Since the loop exits when the getopt call indicates no more options
are present, the trip count for the argument processing loop is not a
compile-time constant. Accordingly, the unrolling transform peels
the first few iterations of the loop, anticipating that the subsequent
constant folding transform can allow for statically evaluating the
loop exit condition, thereby effectively fully unrolling the target
loop. The transformed program in Figure 2b shows the loop is
fully unrolled particularly because the result of the getopt call is
statically evaluated in terms of the static program arguments. As
getopt and getopt_long are very commonly used in parsing code,
we have included a custom transform to specialize these calls in
terms of constant arguments. As the getopt calls are evaluated, the
configuration settings can be correspondingly resolved to constant
values. Figure 2c demonstrates the configuration settings are corre-
spondingly resolved to constant values. The example demonstrates
how fully unrolling the input parsing loop facilitates the constant
folding of expressions in the loop body.

3.3 Constant Propagation

The goal of our tool is to effectively debloat unused application
functionality with respect to a given user-defined usage context.
In order to enable this, the user-provided constant configuration
values must be aggressively propagated throughout the program
callgraph, thereby aiding the compiler optimization passes in fur-
ther simplifying program expressions and potentially pruning dead
code. However, due to the conservative nature of constant propa-
gation in production compilers such as LLVM [17], these simplifi-
cations are often not fully realizable. The conservative nature of
these transforms is inspired by a need for maintaining reasonable
compile-times in the general compilation workflow, thus avoiding
potentially expensive analyses. Nonetheless, for our particular use
case of debloating, a more sophisticated albeit relatively expen-
sive constant propagation transform is justified. Our experimental
results demonstrate the analyses overheads are very reasonable.

332

TRIMMER: Application Specialization for Code Debloating ASE ’18, September 3–7, 2018, Montpellier, France

We develop an interprocedural constant propagation transfor-
mation that provides more precise propagation of configuration
invariants. The transform works by maintaining memory state for
each of the program objects and tracks the loads and updates from
the target objects. Algorithm 3 gives the algorithm for the trans-
form. The runOnBasicBlock procedure is invoked on each basic
block of a function, in reverse postorder. Reverse postorder ensures
a block is visited after all its predecessor blocks have been visited.
The procedure is initially invoked on the entry basic block of the
program entry routine. The argument to the procedure is a context
data structure that maintains the state for each tracked memory
object. Within the procedure, each instruction in the basic block is
traversed. The key points of the algorithm can be summarized as
follows:

Algorithm 3: Algorithm for Interprocedural Constant Propa-
gation
1

2 Function processCallInst(callInst, context)

3 if callee is externally defined then

4 foreach argument in callInst do

5 checkSideEffects(argument, context);
6 end

7 else

8 runOnBasicBlock(callee→ entryBlock, context);
9 end

10 Function processBranchInst(branchInst)

11 foreach successor block in branchInst do

12 if all predecessors are visited then

13 newContext = mergePredecessorContext();
14 runOnBasicBlock(successor, newContext);
15 end

16 end

17

18 Function runOnBasicBlock(basicBlock, context)

19 i = first instruction in basicBlock ;
20 repeat

21 if i is an allocation then

22 objectContext← createObjectContext(i);
23 addToContext(objectContext, context);
24 end

25 if i is a store instruction then

26 if constant value store then

27 updateMemContext(operand, source, context);
28 else

29 markNonConstant(operand, context);
30 end

31 end

32 if i is a load instruction then

33 if operand is constant in context then

34 replaceLoadWithConstant(i, context);
35 end

36 end

37 if i is a call instruction then

38 processCallInst(i);
39 end

40 if i is a branch instruction then

41 processBranchInst(i);
42 end

43 i← getSuccessorInst(i);
44 until i is the last instruction;
45 markVisited(basicBlock);

HandlingAllocations: For each allocation site (Heap and Stack
allocations), a context data structure is created to represent the
memory state of the underlying memory object. The memory state
for globally declared objects is created at analysis startup.

Handling Loads and Stores: For each Store instruction, the
memory context of the target memory object is updated. For con-
stant value stores, the memory state is updated with the corre-
sponding constant value. For non-constant stores, the correspond-
ing memory state is marked as non-constant. For each Load that
corresponds to a constant value in the target memory context, the
load is directly replaced with the constant value. Such constant
folding of loads promotes further constant propagation.

Handling Function Calls: The processCallInst procedure
details the policies for handling call instructions. For callee func-
tions defined internally, the control is transferred to the callee.
Moreover, the state of the memory context at the call-site is for-
warded to the callee.

As the constant propagation transform replaces the constant
memory loads inside a function body, the specialized call path
is only valid in a particular memory context. Therefore, for each
distinct memory context, a new cloned specialized routine must
be created. However, since creating multiple clones of a single
function can increase code size, we only specialize functions that
have a single identical memory context across all call-sites. This
conservative approach prevents a code size blow up that could
result with generating a specialized function per distinct memory
context.

Handling Branches: As branch instructions are encountered,
control is transferred to the successor blocks. The processBranch-
Inst procedure details the policies for handling branch instructions.
Control is transferred to a basic block once all its predecessor blocks
have been visited. This is necessary since the memory context avail-
able at a particular block is computed as an intersection of the con-
stant memory contexts available at all the predecessor blocks. For
instance, if one of the predecessors includes a non-constant store to
a memory object, the successor’s memory context corresponding
to that object is marked non-constant, regardless of a potentially
constant context in a different predecessor. Specifically, the call to
procedure mergePredecessorContext merges the memory con-
texts of all predecessor blocks. We include special handling of loops.
If the basic block is the header (entry block) of a loop, the analysis
does not wait for the analysis completion of the loop latches (blocks
that branch back into the loop header) and starts traversing the
loop body.

The implementation supports a much wider range of instruction
types. However, due to space limitations, we have detailed only
specific, interesting details of the algorithm. Figure 3a includes code
that populates the configuration structures with the user-provided
settings. The parsing code under parse_input is assumed to be
already simplified by a combination of input specialization and loop
unrolling. The routine start_process includes code that is condi-
tional on the configuration settings. Since the configuration values
enable_plugins and enable_debug are resolved as constants, the
constant propagation transform can be leveraged for propagating
the constant values to the corresponding branch conditions un-
der start_process. This allows existing compiler optimizations
to further simplify the code by statically evaluating the branch

333

ASE ’18, September 3–7, 2018, Montpellier, France Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar

Figure 3a: The example code invokes routines that are conditional

on the configuration settings. The data structure config is popu-

lated with the configuration values.

void parse_input(int argc, char *argv[], struct Config *config){
config->enable_plugins = false;
config->enable_debug = false;

}
void start_process(struct Config *config){
if(config->enable_plugins)
load_plugins(); // conditional invocation

if(config->enable_debug)
print_debug(); // conditional invocation

start_main_process(config);
}
void main(int argc, char *argv[]){
struct Config* config = malloc(sizeof(struct Config));
parse_input(argc, argv, config);
start_process(config);

}

Figure 3b: The constant configuration values are propagated; hence,

pruning the unreachable branch conditions, and in turn, eliminat-

ing unreachable routines load_plugins and print_debug.

void start_process(struct Config *config){
// pruned unreachable calls
start_main_process(config);

}
void main(int argc, char *argv[]){
struct Config* config = malloc(sizeof(struct Config));
parse_input(argc, argv, config);
start_process(config);

}

conditions, thereby eliminating dead code. Figure 3b shows the
corresponding transformed program after applying our constant
propagation transform followed by the standard LLVM optimiza-
tions. The calls to routines load_plugins and print_debug are
pruned as a result of the optimizations.

3.4 Soundness of Transformations

Trimmer provides propagation of configuration values through a
combination of sequentially executed passes: input specialization,
loop unrolling, and constant propagation, while allowing exist-
ing LLVM analyses to prune provably unused code in light of the
introduced constants. To preserve program semantics, our transfor-
mations must prevent any incorrect constant folding (replacing a
non-constant expression with a constant value). Incorrect constant
folding may also potentially lead to unsound dead code elimination
(eliminating functions/branches that may be invoked).

To ensure the correctness of constant folding, we make conser-
vative assumptions regarding memory side effects. While these
assumptions limit the precision of our analysis, they ensure that
the transformations are sound. We discuss scenarios that present
threats to the validity of our transformations and the assumptions
necessary to preserve soundness.

Input Specialization: In the input specialization transform, we
replace occurrences of the program input arguments (argv refer-
ences) with corresponding constant values provided in the manifest
file. Input specialization is a sound and incomplete transformation
to specialize programs under the assumption that command line
arguments are not dynamically modified in the program. Dynam-
ically configurable software uses other means such as sockets or

files to reconfigure (e.g., HUP signal is commonly used in Unix pro-
grams to re-read the configuration file) [45]. In practice, dynamic
reconfigurability is uncommon, and hence input specialization can
be correctly applied in the context of most programs.

Notably, we do not eliminate the command line arguments but
only eliminate their references. The arguments are still present and
loaded in memory. There can be pointers to argv that we cannot
track due to imprecise pointer analysis but those pointers will still
read the correct arguments (maintaining soundness) and these ref-
erences will not be converted to constants (limiting completeness).
Since only references that are guaranteed to point to arguments
are replaced, other variables are not impacted. Similarly, in the
constant folding transform, only the references to statically-proven
constant variables are replaced, thereby not impacting variables
with dynamic values.

External Function Calls: For external function calls with un-
known semantics, we make conservative assumptions regarding
the memory side effects. Notably, a) each call argument that is not
a read-only function parameter is assumed to be modified, and
the corresponding context is marked as non-constant, and b) we
assume arbitrary global memory side effects, marking all program
globals as non-constant.

For standard library interfaces (e.g., libc calls) with predefined
standard semantics, the transformations can more precisely reason
about memory side effects. To allow the tool to analyze the library
calls, the users can provide a) paths to library modules (as part of
the input manifest file), or b) statically link the libraries with the
application modules (eliminating external calls).

Indirect Calls: Since our current framework does not include
support for devirtualizing indirect function calls, it makes conser-
vative assumptions for memory side effects. Specifically, arguments
passed to indirect function calls are conservatively assumed to be
modified and marked non-constant. Moreover, since the targets of
indirect calls cannot be precisely determined, we conservatively
mark all program globals as non-constant. These conservative as-
sumptions can limit the precision of constant propagation in sce-
narios where the configuration variables are globals. While an
incomplete call-graph negatively impacts the precision of our anal-
yses, it does not render it unsound. Since indirectly called functions
have their addresses taken, the dead code elimination transforms
in LLVM do not prune these functions.

4 EVALUATION

Our evaluation seeks to answer the following questions: (1) Does
Trimmer effectively reduce code bloat for real-world programs? (2)
Does Trimmer reduce the attack surface for code-reuse attacks? (3)
What are the performance implications of specialization? (4) Are
the analysis overheads reasonable?

4.1 Experimental Setup

To evaluate the effectiveness of our tool, we include four compila-
tion pipelines.

• Baseline: The Baseline pipeline includes programs compiled
with the standard compiler optimizations. Specifically, we com-
pile applications at the -O2 level of optimization.

334

TRIMMER: Application Specialization for Code Debloating ASE ’18, September 3–7, 2018, Montpellier, France

• PE: The second pipeline, referred to as PE, models the workflow
of an LLVM-based partial evaluation tool OCCAM [40]. While
OCCAM uses a similar approach of specializing applications
for static arguments, it does not include the loop unrolling and
constant propagation transforms for effectively propagating the
static configuration. Our results show the lack of these transforms
leads to missed opportunities for code debloating.
• Trimmer: This compilation pipeline represents the workflow
of our debloating tool Trimmer illustrated in Figure 1. In addi-
tion to our proposed transforms, we apply the standard LLVM
optimizations included in the -O2 optimization level.
• Autotuned: Program autotuning is an optimization technique
that is extensively used to improve program performance [14, 23].
Autotuning leverages heuristic search space exploration to iden-
tify configurations that maximize a given objective. The configu-
rations contain parameters and settings that impact the target
objective. OpenTuner [4] is a popular tool that provides an ex-
tensible framework for autotuning by allowing users to specify
the search space and the particular objective to optimize. For our
experiments, we used OpenTuner to search for compiler pass
sequences that optimize the binary size. Applying OpenTuner
to a specialized program is useful since it allows for discover-
ing optimal compiler pass sequences that better exploit the pro-
gram constants. For this reference pipeline, we replace the -O2
optimization level with an autotuned compiler pass sequence
extracted by OpenTuner (on a per-program basis).

4.2 Applications

For our experimental evaluation, we include 13 commonly used
Linux applications. The program descriptions are detailed in Table 1.
We selected a diverse set of programs including networking tools
(knockd, httping, netperf, netstat, aircrack-ng, airtun-ng), popular
Linux tools for data transfer, compression, profiling, and caching
(curl, bzip2, gprof, memcached), commonly used Linux utilities
(objdump, readelf), and an SMT solver (Yices). Overall, we select
programs that provide configurable command-line flags that can
be leveraged for program specialization. Currently, our tool does
not include transforms for file I/O specialization and thus we do
not include applications that read configuration files. Since some
of these programs are also used in embedded systems, the code
size reductions achieved have important implications for resource-
constrained devices. In terms of reducing resource usage, while bi-
nary size reduction is not particularly valuable for general-purpose
systems, a smaller code footprint reduces the exploitable vulnera-
bilities and simplifies security analysis. Section 4.4 discusses how a
trimmed binary results in a reduced attack surface.

The corresponding static arguments used for specialization are
also detailed in Table 1. The “ ” symbols in the static arguments
column indicate non-constant arguments that can be specified at
runtime. For instance, the name of an input file may be provided
as a runtime argument to the specialized binaries. Our selection
of static program arguments is driven by two common scenarios.
Specifically, we select arguments that i) represent the core func-
tionality of the application while leaving out the auxiliary features,
or ii) represent a common use case for an application that supports
multiple use cases. The first scenario is useful with applications
that provide certain core functionality, and the auxiliary features

are rarely ever used and hence can be eliminated. The second sce-
nario is useful with applications that have multiple usage scenarios,
however, only a fraction of those usage scenarios are likely to be
relevant in a particular deployment.

4.3 Reducing Code Bloat

In this section, we evaluate the code size reductions achieved by us-
ing Trimmer to specialize applications for a set of constant program
arguments. Figure 4 shows the code size reductions for the included
applications across the four reference compilation pipelines. Now
we describe the use cases of specializing programs for static configu-
rations. Due to space constraints, we detail a subset of specialization
scenarios:

knockd is a popular port-knock tool used in Linux servers [39].
knockd listens to all traffic on an Ethernet (or PPP) interface, looking
for special “knock” sequences of port-hits. A client makes these port-
hits by sending a TCP (or UDP) packet to a port on the server. We
specialized knockd for the more commonly used Ethernet interface
(also the default), which resulted in slimming the binary by 23.8%.
The code size reduction is achieved by removing the support for
the PPP interface.

memcached is a popular key-value distributed memory object
caching system. It is used extensively for caching results of database
queries and API calls [29]. We specialized memcached for two
essential arguments: max memory (-m) and the IP address to bind
to (-l). Since the values corresponding to the max memory and IP
address flags are specified as dynamic values (“ ” symbols), these
values can still be provided as arguments to the specialized binary.
For this configuration, we observe a reduction of 14%. The reduction
is achieved by debloating support for auxiliary features such as
knobs that tune verbosity levels, page sizes, and data item sizes.

netperf is a benchmark tool used to determine the maximum
latency and throughput between two endpoints [9, 11]. netperf pro-
vides support for a range of network tests for protocols including
TCP and UDP. We specialize netperf for commonly used arguments
including: IP of the remote end point (-H), name of network test (-t),
intervals for displaying interim results (-D), and length of the test
(-l). The values for these flags are passed as runtime values to the
specialized binary. Therefore, the specialized binary still supports
all included network tests while debloating auxiliary functionality
including output formatting, debug output, and IPv6 connections
among others. Specialization for this configuration provides a size
reduction of 22.1%. Greater size reductions are achievable by special-
izing netperf for one particular network test. For instance, merely
including support for the default “TCP_STREAM” test yields a
reduction of 38.1%. For 11 network tests included with netperf, spe-
cializing for one network test provides a mean size reduction of
54.8%.

curl is a tool commonly used for transferring data. It is exten-
sively used in cars, television sets, routers, printers, audio equip-
ment, mobile phones, and media players among other software
applications [50]. curl includes support for multiple protocols in-
cluding HTTP, FTP, SMTP, IMAP, and LDAP among others. curl
is a feature-rich program with more than 120 command-line op-
tions for various tasks and knobs including proxy connections,
FTP operations, progress bars, rate limiting, and IPv6 addressing
among others. While curl is used in a variety of different ways, it is

335

ASE ’18, September 3–7, 2018, Montpellier, France Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar

Table 1: Descriptions of the studied applications. The static arguments used for specialization are included. The “ ” symbols indicate non-

constant arguments that can be specified at runtime.

Application Binary Size Static Arguments Description

knockd 47 KB -i eth0 Listens to traffic on a specified network interface, looking for sequences of port hits
httping 44 KB -G -s -X -b -B Measures latency and throughput for a given webserver
netperf 162 KB -H -t -D -l Benchmark for measuring various aspects of networking performance
aircrack-ng 113 KB -b -a wpa -s -w dictionary.lst Used to assess WiFi network security
airtun-ng 88 KB -a -w Creates a virtual tunnel interface to monitor encrypted network traffic
bzip2 31 KB -force –keep –quiet –small Popular compression tool used on major Linux distributions
objdump 1.9 MB -D –syms -s -w Displays information from object files. Options control the information displayed
readelf 524 KB -h -l -S -s -r -d Displays information about ELF files. The options control the information displayed
gprof 894 KB -c -r -i -s Profiles program execution and collects program statistics
memcached 100 KB -m -l An in-memory key-value store for small chunks of arbitrary data
netstat 117 KB -a -e -p -s Prints network connections, routing tables, interface statistics, multicast memberships
curl 279 KB –compress –http2.0 –ipv4 –ssl –url Transfers data from or to a server, using one of the supported protocols
yices 1.6 MB –logic=QF_AUFBV SMT Solver with support for arithmetic, array, bitvector, and uninterpreted functions

unlikely a deployment scenario would require all the shipped func-
tionality. In such cases, specialization can be leveraged to remove
the undesired features. We specialized curl for the common usage
scenario of reading data over an HTTPS connection given a target
URL (curl-1 in Figure 4). This particular curl configuration is com-
monly used for reading RSS feeds and provides a 75.4% binary size
reduction. Similarly, specializing curl as an SMTP client for sending
emails (curl-2) reduces the binary size by 71.8%. These reductions
are achieved by debloating protocols and features that were not
required in the corresponding configurations. Since usage scenarios
will vary across deployments, users can define static configurations
that best represent their use cases.

Yices [21] is an SMT solver that includes support for four theories
including: linear and non-linear arithmetic, theory of arrays, bitvec-
tor theory, and theory of uninterpreted functions. SMT solvers are
used in a range of different application domains including hard-
ware verification [15, 47], symbolic execution [13, 38], and bounded
model checking (BMC) [8] among others. We specialized Yices for
3 different combinations of theory solvers to generate versions
specialized for a particular problem domain. Since hardware verifi-
cation usually requires SMT solvers with support for the bitvector
theory [27], we specialized Yices for this configuration (yices-1 in
Figure 4) yielding a 10.2% reduction in code size. Similarly, sym-
bolic execution and test generation require support for the theory
of bitvector and arrays [12, 22]. Specializing Yices for this config-
uration (yices-2) yielded a 7.7% reduction in binary size. Bounded
model checking and k-induction for timed systems merely require
support for linear real arithmetic [31]. Specializing Yices for the
linear arithmetic solver (yices-3) resulted in a 24.1% size reduction.

Results Summary:As in the aforementioned use cases, the rest
of the applications have been specialized with static configurations
that represent realistic use cases. For the 13 programs studied, we
observe a mean binary size reduction of 21.1% compared to the
baseline. For all programs, partial evaluation (PE) using the OCCAM
tool does not provide binary size reduction. Since OCCAM does
not include the necessary simplifying transforms of improved loop
unrolling and constant propagation, it misses opportunities for
debloating code.

We leverage autotuning techniques to search for combinations
of optimizations that reduce code size. In comparison to applying
the standard -O2 optimization pipeline, autotuning the specialized

0

20

40

60

80

100

120
Baseline PE TRIMMER Autotuned

B
in

ar
y

si
ze

 a
s

p
er

ce
n

ta
ge

 o
f

B
as

el
in

e
(%

)

Figure 4: Comparing binary sizes across the four reference compila-

tion pipelines. The reductions are shown relative to the Baseline.

application provides an additional 4.3% size reduction (25.4% over-
all) on average. These results show an optimized compiler pass
sequence can better exploit the constants introduced as part of
specialization.

4.4 Reducing the Attack Surface

We assess the implications of specialization on reducing code reuse
attacks. A code reuse attack is more powerful compared to code
injection attacks since it leverages existing code snippets (called
gadgets) in the executable as the attack payload [46]. These attacks
require subverting the programs’ control flow by exploiting vul-
nerabilities such as buffer overflows [3], integer overflows [42],
or format string vulnerabilities [37]. Gadgets are small code se-
quences that usually end with a RET or JMP instruction. This allows
attackers to chain pointers to the gadgets on the stack, thereby
constructing a malicious payload. However, to conduct a code reuse
attack, an attacker must have knowledge of the gadget locations
in the executable [32]. Prior work has focused on diversification
techniques that limit the attacker to a small subset of these pre-
dictable targets, thus rendering the attacks infeasible. Some of these
techniques include NOP insertion and instruction location random-
ization (ILR) [25, 26].

336

TRIMMER: Application Specialization for Code Debloating ASE ’18, September 3–7, 2018, Montpellier, France

Our results with Trimmer show that specialization can reduce
the number of exploitable gadgets as well as relocate the gadget
locations, thus diversifying the binary. While we do not claim spe-
cialization serves as a standalone defense mechanism, we show
it can significantly reduce the attack surface. Table 2 shows the
results of our gadget analysis. For our experiments, we used ROP-
gadget [44], a popular tool for finding gadgets in program binaries.
The Gadgets Baseline column includes the total number of gadgets
in the original binary compiled with the baseline. The Gadgets

Trimmer column includes the number of gadgets in the binary after
applying specialization using Trimmer. For all applications, we
observe noticeable reductions in the total gadget count. Across all
programs, we observe a mean reduction of 20.1% and a maximum
reduction of 87% (for curl). We also measure the system call gadgets
across the original and specialized binaries. To carry out useful
tasks, attackers often need to exploit system calls [10]. Hence most
ROP attacks set up the stack to execute short sequences of gadgets
before a system call is issued [19]. The gadgets executed prior to the
system call gadget allow for setting up the stack with the intended
arguments, thus allowing an attacker to execute an operation of
interest. Our results indicate for 7 out of the 8 programs that con-
tain system call gadgets, the gadgets are reduced. For 4 of these
programs, the system call gadgets are completely removed, there-
fore creating binaries that are not susceptible to ROP attacks that
leverage system calls. Notably, specializing curl for both configura-
tions (described in the previous section) eliminated all 11 system
call gadgets in the baseline binary. For 3 programs, we observe a
slight increase (of 1) in system call gadgets. Although specialization
may potentially introduce new gadgets, we observe that debloating
unused features mostly reduces gadgets.

Specializing applications for specific configurations allows for
diversifying the program, making it harder for attackers to gain
insights about the gadget locations. To measure diversification, we
count the number of functionally equivalent gadgets at the same
byte location in the baseline and specialized binaries. We call these
surviving gadgets, consistent with prior work in code diversifica-
tion [26]. Notably, across all programs, the surviving gadgets are
reduced to 0, showing that instruction sequences are sufficiently
modified by our transforms. The benefits of diversification are en-
hanced if an application can be specialized for a range of different
configurations and each specialized binary is sufficiently dissimi-
lar from the other. To evaluate this, we specialized the Yices SMT
solver for different combinations of theory solvers. For all 12 pos-
sible configurations of Yices, we generated a specialized binary
for each configuration and did a pair-wise comparison of common
gadgets (functionally equivalent gadgets at the same byte location)
across the binaries. The highest gadget overlap across any two
binaries is only 4.2%. Moreover, none of the 12 specialized bina-
ries has any common gadgets with the baseline binary. Similarly,
comparing the specialized binaries corresponding to 5 different
configurations of curl, the highest gadget overlap is only 3% and
none of the specialized binaries has any common gadgets with the
baseline binary.

Compared to existing diversification and enforcement-based
mechanisms, specialization provides a major advantage by incur-
ring no performance overhead and reducing space overhead. Tech-
niques such as CFI, ILR, NOP insertion all have negative implica-
tions for code size and performance [1, 25, 26, 53]. Overall, Trimmer
can provide a useful diversification mechanism for applications
that can be specialized based on their deployment settings. Di-
versification via specialization can be used in conjunction with
enforcement-based mechanisms such as CFI to provide stronger
security guarantees.

Table 2: “Gadgets Baseline" refers to the total gadgets in the original

binary, while “GadgetsTrimmer" refers to the gadgets remaining in

the specialized binary (applying Trimmer). “Syscall Gadgets" is the

number of system call gadgets in the original binary, while “Syscall

Gadgets Trimmer" refers to gadgets remaining in the specialized

binary. Reduction (%) shows the percentage reduction in the total

gadgets after specialization.

Application Gadgets

Baseline

Syscall

Gadgets

Gadgets

Trimmer

Syscall

Gadgets

Trimmer

Reduction

(%)

knockd 246 0 161 0 34.6 %
httping 580 0 218 0 62.9%
netperf 963 1 793 0 17.7%
aircrack-ng 1091 0 955 1 12.5%
airtun-ng 786 1 733 0 6.7%
bzip2 246 0 208 0 15.5%
objdump 11228 1 9419 2 16.1%
readelf 3875 1 2902 0 25.1%
gprof 9555 6 8433 1 11.7%
memcached 883 0 641 1 27.4%
netstat 440 4 355 0 19.3%
curl-1 2786 11 372 0 86.7%
curl-2 2786 11 382 0 86.2%
yices-1 12245 8 11348 3 7.3%
yices-2 12245 8 11651 3 4.9%
yices-3 12245 8 9660 3 21.1%

4.5 Performance Impact

To understand the performance impact of application specialization,
we measured the execution time of each program over ten runs,
comparing the original and specialized binaries. For gprof, curl,
and netperf, we observe noticeable performance improvements
of 4.8%, 4.6%, and 13%, respectively. For the remaining programs,
we observe less than 1% improvement. Measuring the dynamic
instructions shows specialization improves performance when the
instructions executed on the hot path of execution are reduced. In
other instances, although debloating reduces the static instructions,
it does not significantly reduce the instructions executed on the hot
path. Prior work has shown autotuning compiler transforms for
parallelizing compilers can yield significant performance improve-
ments [5, 51]. However, since our autotuning search is tuned for
minimizing code size, we do not observe noticeable performance
differences compared with the -O2 pipeline.

4.6 Analysis Time

We evaluated the time usage of our tool on a Linuxworkstation with
an Intel Core i5-3380M CPU running at 2.9 GHz. We compiled our
LLVM transforms with Clang at the -O2 level of optimization. Fig-
ure 5 shows the percentage breakdown of the individual transform
overheads. Loop Unroll denotes the overhead for the loop unrolling
transform, Const Prop shows the overhead for the constant prop-
agation transform, and O2 denotes the overhead of running the

337

ASE ’18, September 3–7, 2018, Montpellier, France Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Loop Unroll Const Prop O2

Figure 5: Comparing the analysis overheads of loop unrolling, con-

stant propagation, and the standard LLVM optimizations (-O2).

LLVM -O2 optimization pipeline, which includes multiple standard
compiler optimization passes. We do not show the execution times
for the input specialization transform since that incurs negligible
overhead. The evaluation indicates loop unrolling does not incur
significant overhead, while the -O2 optimization pipeline incurs
the largest fraction of the analysis time. On average, loop unrolling
constitutes 6.4%, constant propagation constitutes 35.5%, and -O2
constitutes 58.1% of the total execution time. The absolute time
usage of the tool is also reasonable. On average, the analysis time
across all programs is 7.2 seconds, and the maximum analysis time
(for Yices) is 18.9 seconds. The time usages are quite reasonable, par-
ticularly considering the specialization overhead is a one-time cost.
These overheads indicate it may be feasible to incorporate more
sophisticated loop unrolling and constant propagation transforms
as part of the LLVM toolchain.

5 RELATEDWORK

Program specialization has been the topic of both earlier and recent
research efforts. Our tool builds on previously published work in
the area of specialization.We see our work fitting in the broad scope
of these efforts, with a specific motivation for code debloating.

Malecha et al. [40] presented a partial evaluation toolchain for
specializing whole programs. While their tool includes transforms
for specializing programs with respect to the predefined static
user input, it entirely relies on the standard LLVM optimizations
for providing the necessary code simplification. In our work, we
observe these techniques are inadequate for providing effective
specialization. Instead of relying on heroic compiler analysis, we
develop transforms that improve constant propagation.

Smowton et al. [48] proposed a framework that propagates con-
stant data from the file system into the program. These techniques
are particularly relevant for programs that read static configuration
files. While these techniques present interesting solutions, we be-
lieve they need to be extended to work effectively with real-world
programs. As part of future work, we hope to investigate how to
integrate file-based specialization as part of our framework.

Specialization has also been envisioned in the broader context of
optimizing the full software stack [6, 41]. Bhatia et al. [6] applied
partial evaluation techniques for specializing the network stack in
operating system kernels. The approach applied is semi-automatic

as it requires the user to provide declarative annotations for spec-
ifying program invariants. We believe this process can be fully
automated and thereby made more practical, by extending our tool
with the necessary techniques for handling OS-specific constructs.

Debloating application containers such as those provided by
Docker has been the topic of recent work [43]. Rastogi et al. employ
an approach based on dynamic analysis for automatically partition-
ing containers to provide better privilege separation across different
applications. In particular, dynamic analysis is leveraged to iden-
tify the resource dependencies of applications thereby guiding the
partitioning process. However, their tool only partitions containers
at the granularity of individual executables and does not partition
executables. Trimmer uses static analysis techniques to debloat
functionality at finer granularity.
6 LIMITATIONS AND FUTUREWORK

Trimmer provides an important step in making specialization prac-
tical for real-world programs. In this section, we point out some
limitations of our tool and discuss directions for future research.

Operating system stacks often contain low-level assembly code
to implement the architecture-specific operations. To specialize
the full software stack, compiler transforms must either have the
capability to analyze assembly code or rely on the translation of
assembly code to the compiler IR [20]. As part of future work, we
intend to extend Trimmer with analyses that can reason about
assembly code. Moreover, systems code and applications often in-
clude indirect function calls that can limit the capabilities of static
analysis [30]. In the presence of indirect function calls, our con-
stant propagation transformmakes conservative assumptions about
memory side effects. In future research, we hope to include anal-
yses for devirtualizing indirect function calls, thereby facilitating
more precise constant propagation. Currently, our tool specializes
applications for static program arguments. To support applications
that read configuration files, we intend to build transformations for
specializing file I/O operations.

7 CONCLUSION

In this paper, we introduced Trimmer, an application specialization
tool that debloats unused functionality by specializing programs
for user-defined configurations. Our results demonstrate our tool
effectively optimizes binary sizes for real-world programs. For ap-
plications spanning various domains, we observed a mean binary
size reduction of 21% and a maximum reduction of 75%. We also
showed specialization can serve as a mechanism for introducing
software diversity and can reduce the number of exploitable gad-
gets. For the evaluated programs, we observe a 20% mean reduction
in the total gadgets and a maximum reduction of 87%. We believe
our tool is an important step towards the goal of specializing the
full software stack.

ACKNOWLEDGEMENTS

This material is based upon work supported by the US National
Science Foundation (NSF) under Grant ACI-1440800 and the Of-
fice of Naval Research (ONR) under Contract N68335-17-C-0558,
Grant N00014-4-1-0525, and Grant N00014-17-1-2996. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of NSF or ONR.

338

TRIMMER: Application Specialization for Code Debloating ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES

[1] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow integrity.
In Proceedings of the 12th ACM Conference on Computer and Communications

Security (CCS) (2005), ACM, pp. 340–353.
[2] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers, Principles, Techniques. Addison

Wesley Boston, 1986.
[3] Aleph, O. Smashing the stack for fun and profit. http://www. shmoo.

com/phrack/Phrack49/p49-14 (1996).
[4] Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J.,

O’Reilly, U.-M., and Amarasinghe, S. Opentuner: An extensible framework
for program autotuning. In 23rd International Conference on Parallel Architecture

and Compilation Techniques (PACT) (2014), IEEE, pp. 303–315.
[5] Basu, P., Venkat, A., Hall, M., Williams, S., Van Straalen, B., and Oliker, L.

Compiler generation and autotuning of communication-avoiding operators for
geometric multigrid. In 20th Annual International Conference on High Performance

Computing (2013).
[6] Bhatia, S., Consel, C., Le Meur, A.-F., and Pu, C. Automatic specialization of

protocol stacks in OS kernels. In Proceedings of the 29th Annual IEEE Conference

on Local Computer Networks (2004).
[7] Bhattacharya, S., Rajamani, K., Gopinath, K., and Gupta, M. The interplay

of software bloat, hardware energy proportionality and system bottlenecks. In
Proceedings of the 4th Workshop on Power-Aware Computing and Systems (2011),
ACM, p. 1.

[8] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., Zhu, Y., et al. Bounded
model checking. Advances in Computers 58 (2003), 117–148.

[9] Binkert, N. L., Hallnor, E. G., and Reinhardt, S. K. Network-oriented full-
system simulation using m5. In Sixth Workshop on Computer Architecture Evalu-

ation using Commercial Workloads (CAECW) (2003), pp. 36–43.
[10] Bletsch, T., Jiang, X., Freeh, V. W., and Liang, Z. Jump-oriented programming:

a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security (2011), ACM, pp. 30–40.
[11] Blum, R. Network Performance Open Source Toolkit: using Netperf, tcptrace, NISTnet,

and SSFNet. John Wiley & Sons, 2003.
[12] Brummayer, R., and Biere, A. Boolector: An efficient SMT solver for bit-vectors

and arrays. In International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (2009), Springer, pp. 174–177.
[13] Cadar, C., Dunbar, D., Engler, D. R., et al. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In Proceedings

of the 8th USENIX conference on Operating Systems Design and Implementation

(OSDI) (2008), vol. 8, pp. 209–224.
[14] Christen, M., Schenk, O., and Burkhart, H. Patus: A code generation and

autotuning framework for parallel iterative stencil computations on modern
microarchitectures. In IEEE International Parallel & Distributed Processing Sym-

posium (IPDPS) (2011), IEEE, pp. 676–687.
[15] Clarke, E., Talupur, M., Veith, H., and Wang, D. SAT based predicate ab-

straction for hardware verification. In International Conference on Theory and

Applications of Satisfiability Testing (2003), Springer, pp. 78–92.
[16] Consel, C., Hornof, L., Marlet, R., Muller, G., Thibault, S., Volanschi, E.-N.,

Lawall, J., and Noyé, J. Tempo: Specializing systems applications and beyond.
ACM Computing Surveys (CSUR) 30, 3es (1998), 19.

[17] Cooper, K., and Torczon, L. Engineering a Compiler. Elsevier, 2011.
[18] Danvy, O. Type-directed partial evaluation. In Partial Evaluation. Springer, 1999,

pp. 367–411.
[19] Davi, L., Sadeghi, A.-R., Lehmann, D., and Monrose, F. Stitching the gadgets:

On the ineffectiveness of coarse-grained control-flow integrity protection. In
USENIX Security Symposium (2014), pp. 401–416.

[20] Dinaburg, A., and Ruef, A. Mcsema: Static translation of x86 instructions to
LLVM. In ReCon 2014 Conference, Montreal, Canada (2014).

[21] Dutertre, B. Yices 2.2. In International Conference on Computer Aided Verification

(CAV) (2014), Springer, pp. 737–744.
[22] Ganesh, V., and Dill, D. L. A decision procedure for bit-vectors and arrays. In

International Conference on Computer Aided Verification (CAV) (2007), Springer,
pp. 519–531.

[23] Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., and Cavazos, J.
Auto-tuning a high-level language targeted to GPU codes. In Innovative Parallel

Computing (InPar) (2012), IEEE, pp. 1–10.
[24] Hibbs, C., Jewett, S., and Sullivan, M. The art of lean software development: a

practical and incremental approach. " O’Reilly Media, Inc.", 2009.
[25] Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., and Davidson, J. W. ILR:

Where’d my gadgets go? In IEEE Symposium on Security and Privacy (SP) (2012),
IEEE, pp. 571–585.

[26] Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., and Franz, M. Profile-
guided automated software diversity. In Proceedings of the 2013 IEEE/ACM In-

ternational Symposium on Code Generation and Optimization (CGO) (2013), IEEE
Computer Society, pp. 1–11.

[27] Jha, S., Limaye, R., and Seshia, S. A. Beaver: Engineering an efficient SMT
solver for bit-vector arithmetic. In International Conference on Computer Aided

Verification (CAV) (2009), Springer, pp. 668–674.
[28] Jones, N. D., Gomard, C. K., and Sestoft, P. Partial evaluation and automatic

program generation. Peter Sestoft, 1993.
[29] Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur Rahman, M.,

Islam, N. S., Ouyang, X., Wang, H., Sur, S., et al. Memcached design on high
performance RDMA capable interconnects. In International Conference on Parallel
Processing (ICPP) (2011), IEEE, pp. 743–752.

[30] Kim, H., Joao, J. A., Mutlu, O., Lee, C. J., Patt, Y. N., and Cohn, R. VPC
prediction: reducing the cost of indirect branches via hardware-based dynamic
devirtualization. ACM SIGARCH Computer Architecture News 35, 2 (2007), 424–
435.

[31] Kindermann, R., Junttila, T., and Niemelä, I. SMT-based induction methods
for timed systems. In International Conference on Formal Modeling and Analysis

of Timed Systems (2012), Springer, pp. 171–187.
[32] Larsen, P., Brunthaler, S., Davi, L., Sadeghi, A.-R., and Franz, M. Automated

software diversity. Synthesis Lectures on Information Security, Privacy, & Trust 10,
2 (2015), 1–88.

[33] Larus, J. Spending Moore’s dividend. Communications of the ACM 52, 5 (2009),
62–69.

[34] Lattner, C., and Adve, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-directed and Runtime Optimization (2004),
IEEE Computer Society, p. 75.

[35] Lee, C.-T., Lin, J.-M., Hong, Z.-W., and Lee, W.-T. An application-oriented
Linux kernel customization for embedded systems. J. Inf. Sci. Eng. 20, 6 (2004),
1093–1107.

[36] Lekatsas, H., and Wolf, W. Code compression for embedded systems. In
Proceedings of the 35th Annual Design Automation Conference (DAC) (1998), ACM,
pp. 516–521.

[37] Lhee, K.-S., and Chapin, S. J. Buffer overflow and format string overflow vul-
nerabilities. Software: Practice and Experience 33, 5 (2003), 423–460.

[38] Ma, K.-K., Phang, K. Y., Foster, J. S., and Hicks, M. Directed symbolic execution.
In International Static Analysis Symposium (SAS) (2011), Springer, pp. 95–111.

[39] Madia, A., Nikoletseas, S., Stamatiou, Y., Tsolovos, D., and Vlachos, V.
Crowd sourcing based privacy threat analysis and alerting. Cryptography, Cyber
Security and Information Warfare (3rd CryCybIW) (2016).

[40] Malecha, G., Gehani, A., and Shankar, N. Automated software winnowing.
In Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC)

(2015), ACM, pp. 1504–1511.
[41] McNamee, D., Walpole, J., Pu, C., Cowan, C., Krasic, C., Goel, A., Wagle, P.,

Consel, C., Muller, G., and Marlet, R. Specialization tools and techniques
for systematic optimization of system software. ACM Transactions on Computer

Systems (TOCS) 19, 2 (2001), 217–251.
[42] Molnar, D., Li, X. C., and Wagner, D. Dynamic test generation to find integer

bugs in x86 binary Linux programs. In USENIX Security Symposium (2009), vol. 9,
pp. 67–82.

[43] Rastogi, V., Davidson, D., De Carli, L., Jha, S., and McDaniel, P. Cimplifier:
automatically debloating containers. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering (FSE) (2017), ACM, pp. 476–486.
[44] Salwan, J. Ropgadget tool. http://shell-storm.org/project/ROPgadget/, 2012.
[45] Schilit, B. N., Theimer, M. M., and Welch, B. B. Customizing mobile ap-

plications. In Proceedings USENIX Symposium on Mobile & Location-indendent

Computing (1993), vol. 9.
[46] Shacham, H. The geometry of innocent flesh on the bone: Return-into-libc

without function calls (on the x86). In Proceedings of the 14th ACM conference on

Computer and Communications Security (CCS) (2007), ACM, pp. 552–561.
[47] Sheeran, M., Singh, S., and Stålmarck, G. Checking safety properties using

induction and a sat-solver. In International Conference on Formal Methods in

Computer-aided Design (FMCAD) (2000), Springer, pp. 127–144.
[48] Smowton, C., and Hand, S. Make world. In Proceedings of the 13th USENIX Con-

ference on Hot Topics in Operating Systems (HotOS) (2011), USENIX Association,
pp. 26–26.

[49] Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., and Sadeghi,
A.-R. Just-in-time code reuse: On the effectiveness of fine-grained address space
layout randomization. In Proceedings of the 2013 IEEE Symposium on Security and

Privacy (2013), IEEE, pp. 574–588.
[50] Stenberg, D. Everything curl. https://legacy.gitbook.com/book/bagder/

everything-curl/, 2017.
[51] Tiwari, A., Chen, C., Chame, J., Hall, M., and Hollingsworth, J. K. A scal-

able auto-tuning framework for compiler optimization. In IEEE International

Symposium on Parallel & Distributed Processing (IPDPS) (2009), IEEE, pp. 1–12.
[52] Xu, G., Mitchell, N., Arnold, M., Rountev, A., and Sevitsky, G. Software bloat

analysis: finding, removing, and preventing performance problems in modern
large-scale object-oriented applications. In Proceedings of the FSE/SDP Workshop

on Future of Software Engineering Research (2010), ACM, pp. 421–426.
[53] Zhang, M., and Sekar, R. Control flow integrity for COTS binaries. In USENIX

Security Symposium (2013), pp. 337–352.

339

http://shell-storm.org/project/ROPgadget/
https://legacy.gitbook.com/book/bagder/everything-curl/
https://legacy.gitbook.com/book/bagder/everything-curl/

	Abstract
	1 Introduction
	2 Motivation
	3 TRIMMER
	3.1 Input Specialization
	3.2 Loop Unrolling
	3.3 Constant Propagation
	3.4 Soundness of Transformations

	4 Evaluation
	4.1 Experimental Setup
	4.2 Applications
	4.3 Reducing Code Bloat
	4.4 Reducing the Attack Surface
	4.5 Performance Impact
	4.6 Analysis Time

	5 Related Work
	6 Limitations and Future Work
	7 Conclusion
	References

