
Research Statement
Hashim Sharif

With the slowdown of Moore’s law and the end of Denard scaling, the gap between compute hardware
performance and the computational demands of software applications is widening. Applications deployed on
the edge such as deep learning inference, real-time data analytics, real-time robotics tasks, and augmented and
virtual reality (AR/VR) are pushing the compute capabilities of current systems. To bridge this gap, I work on
techniques that improve the performance and energy-efficiency of software programs by using accuracy-aware
optimizations that trade off small amounts of computational accuracy in exchange for significant performance
improvements. My PhD dissertation focuses on building retargetable compiler and runtime systems that
automatically and efficiently navigate the tradeoff space of accuracy and performance offered by the various
hardware and software approximation choices available on heterogeneous compute platforms. A major focus
of my work is on developing easy-to-use systems for compute-efficient deep learning at the edge. I
closely engage with industry, large companies and startups, and take a keen interest in releasing open-source
systems. As future work, I plan to a) investigate a configurable and customizable compiler ecosystem that
enables domain experts to create compiler frameworks for new application domains, and b) explore systems
for efficient ML on autonomous cyber-physical systems.

1 RESEARCH OVERVIEW
Computations in many important application domains such as image and video processing, object detection,
speech recognition, and data analytics are inherently approximate in the sense that the input data is often
derived from noisy sensors or the output results are computed with some acceptably accurate solutions. This
error tolerance property of applications has led to the adoption of approximate computing techniques: software
and hardware optimizations that trade off small amounts of accuracy for better performance.
Research Challenges. The diversity of approximation techniques and the varying error tolerance across
applications introduces multiple challenges: a) naively mapping kernels/operations to their approximate
variants may lead to unacceptably low output quality, b) it is unclear how much accuracy can be reduced for
individual components (e.g., neural network used in an autonomous robot), without compromising on the
end-to-end task quality (e.g., robot navigation), c) different compute units (CPUs, GPUs, accelerators) provide
different approximation choices and different accuracy-performance tradeoffs, d) the variety of software and
hardware approximation choices introduce a large search space, and hence intelligent exploration techniques
are needed, and e) it is difficult to maintain object code portability, while supporting hardware-specific
approximation choices.
Summary of Research. To address these challenges, my research explores three major thrusts towards
sophisticated compiler support for end-to-end accuracy-aware program optimization, with the goal of enabling
compute-intensive workloads to run efficiently on resource-constrained heterogeneous edge compute systems.
• I proposed ApproxHPVM [7], the first compiler framework that supports a notion of hardware-agnostic
and portable accuracy metrics at the Intermediate Representation (IR) level, and uses these metrics for
accuracy-aware program optimization.

• I designed ApproxTuner [8], a compiler and runtime system that introduces efficient approximation-tuning
strategies that scale well for large tensor-based programs, while supporting multiple software and hardware
approximation choices for each tensor operation.

• I proposed ApproxCaliper, the first application-aware neural network optimization framework that automat-
ically optimizes neural network components in cyber-physical systems while maintaining the end-to-end
application-specific quality goals

Industry Collaborations. I work closely with industry to gain insights into emerging real-world workloads
and to better identify open research problems that are of direct relevance to production systems. In the past few
years, I have actively worked on the DARPA-funded DSSoC (Domain-specific System on chip) project [2] that
is led by IBM Research and involves Illinois, Harvard, and Columbia. For DARPA reviews, I have led research
teams of PhD students working on the HPVM compiler (project that includes ApproxHPVM and ApproxTuner)
with the goal of compiling energy-efficient programs for an application-customized heterogeneous SoC. Last
year, I closely collaborated with a robotics startup, Earthsense, to optimize the software stack of a production-
ready autonomous agriculture robot and performed field experiments. Our optimizations reduced the cost of
deployed compute hardware by 3×. I am also keenly interested in open-sourcing my research. I led two releases
of HPVM; the first release was presented at the open-source conference FOSDEM 2020 [3]. These open-source
releases have facilitated researchers at IBM Research, Harvard, the University of Belgrade, and the University
of Ljubljana among others, to adopt HPVM in their own projects.

1

2

2 APPROXHPVM: A PORTABLE COMPILER IR FOR ACCURACY-AWARE OPTIMIZATIONS
Concept: ApproxHPVM [7] is a compiler IR and framework that supports accuracy-aware optimization
for heterogeneous platforms with diverse compute units and approximation choices, while maintaining the
portability of the software package across hardware architectures.
Approach: ApproxHPVM is easy-to-use; it takes as input a program and an accuracy requirement (e.g., classi-
fication accuracy), and automatically maps the kernels/operations in the program to different approximation
choices and different hardware compute units to maximize performance/energy benefits, while meeting the
accuracy requirement. To maintain software portability, ApproxHPVM takes a novel approach by decoupling
the approximation selection task into i) a hardware-independent autotuning phase at development-time (before
code is shipped) that uses randomized error injection to measure error sensitivity of individual operations, and
assigns error budgets in terms of accuracy metrics, and ii) a subsequent install-time (on device) that selects
approximation knobs based on these error budgets.
Results: Evaluations using nine popular convolutional neural networks (CNNs) on a heterogeneous edge
SoC, ApproxHPVM achieves speedups between 1-9× and energy reductions between 1.1-11.3×, with only one
percentage point accuracy loss.
Impact:ApproxHPVMwas published at OOPSLA 2019 [7]. To compile programs for the EPOCHs SoC designed
in our DARPA-funded DSSoC project, we use ApproxHPVM since it supports easy-to-use frontends for high-
level domain-specific languages, a retargetable IR, and efficient code generation backends for accelerators and
general-purpose compute units.

3 APPROXTUNER: A COMPILER AND RUNTIME SYSTEM FOR ADAPTIVE APPROXIMATIONS
Concept:ApproxTuner [8] (also part of theApproxHPVMecosystem) is an extensible and efficient approximation-
tuning framework that supports both static and dynamic (runtime) tuning of approximation knobs.
Approach: ApproxTuner adopts a novel 3-phase strategy for selecting and tuning approximations. It splits
tuning into: 1) construction of tradeoff curves for hardware-independent approximations at development-time,
2) mapping to hardware-specific approximations at install-time, and 3) a fast approximation selection at
runtime. ApproxTuner introduces predictive tuning; a novel model-based approximation-tuning technique that
uses compositional models for accuracy prediction to speed up both development- and install-time tuning.
Results: Using hardware-independent approximations on GPU, for 10 popular CNNs and an image processing
benchmark, ApproxTuner achieves a mean speedup of 2.2× and mean energy reduction of 2.1×, with merely 1
percentage point accuracy loss. Predictive tuning is 12.8× faster compared to conventional empirical tuning
(used in ApproxHPVM), while achieving comparable benefits.
Impact: ApproxTuner is published at PPoPP’21 [8]. ApproxTuner is open-source [4] and is easily extensible to
new approximation choices and new hardware backends. ApproxTuner inspired mobile computing researchers
at the University of Ljubljana, Slovenia, to extend ApproxTuner with dynamic tuning support for Android
systems. Amazon AWS is interested in evaluating ApproxTuner for optimizing machine learning models in
the SageMaker framework [1].

4 APPROXCALIPER: OPTIMIZING NEURAL NETWORKS FOR TASK-SPECIFIC GOALS
Concept: ApproxCaliper [9] is the first application-aware neural network optimization framework. It is
application-aware in that it uses a developer-specified application-level quality goal for tuning; this allows
ApproxCaliper to treat neural network accuracy as a knob that can be relaxed to gain higher performance
benefits.
Approach: ApproxCaliper optimizes neural network components used for visual perception in cyber-physical
systems. ApproxCaliper supports two capabilities: (i) autotunes and replaces neural network components with
model variants optimized for system latency and/or throughput (e.g., pruned neural network models) while
maintaining end-to-end application-specific quality goals, and (ii) co-tunes the model FPS (frames per second
at which the neural network runs), and the model accuracy to minimize system resource utilization (e.g., GPU
utilization), while maintaining application-specific goals. ApproxCaliper includes analyses that capture the
interplay of errors and performance metrics such as FPS and latency. This is important in scenarios where
better performance (e.g., higher FPS) can compensate for higher error and vice versa.

Research Statement 3

Results:We evaluate a production-ready autonomous agriculture monitoring robot (developed by Earthsense)
and a lane-following golf cart simulator; both use convolutional neural networks for visual perception.
ApproxCaliper achieves speedups of up to 5.3× for the agriculture robot, and 2.9× for the lane-following
simulator, without affecting the quality of autonomous navigation. ApproxCaliper is extensible to other kinds
of neural network optimizations.
Impact: Working with Earthsense, we optimized their software stack using ApproxCaliper. The performance
improvements achieved via ApproxCaliper allowed us to replace a $876 Intel NUC compute device on the
production robot with a $35 Raspberry Pi4 that provides the same level of navigation quality. Pi4 also compares
favorably to the $99 Jetson Nano, the cheapest device we found to deliver necessary performance without
approximations. Our work has led Earthsense to consider lower cost alternatives for compute hardware.
ApproxCaliper is currently under review at USENIX ATC 2022.

5 TRIMMER: APPLICATION SPECIALIZATION FOR CODE DEBLOATING
While my PhD dissertation work focuses on accuracy-aware program optimization frameworks, my earlier
research focused on code size reduction techniques. Minimizing code size is an essential goal for edge computing
since many edge and IoT compute devices have limited memory and secondary storage. An opportunity for
reducing program size is that libraries and programs often support a more extensive set of APIs and features
than needed in a specific usage context. My earlier research proposed TRIMMER [5, 6], a code size reduction
tool that specializes programs for user-provided constant configuration parameters, and removes support for
unused features. TRIMMER uses novel constant propagation techniques to forward constant values throughout
the program call-graph, uses partial evaluation techniques to specialize functions for constant arguments,
and removes code that is provably dead for the constant values. For 20 commonly-used Linux programs and
utilities, TRIMMER achieves a mean binary size reduction of 23% and a maximum reduction of 63%.

6 FUTUREWORK
My research on compiler and runtime systems for end-to-end accuracy-aware program optimization shows that
good system support enables significant performance and energy improvement for real-world workloads. In
the future, my goal is to develop new systems that make it easy to exploit accuracy-aware optimizations across
the computing stack; from algorithms to approximate hardware. I am excited about exploring a configurable
and customizable compiler ecosystem that enables domain experts to create compiler frameworks for new
application domains (Section 6.1). I am also interested in exploring systems for efficient ML on autonomous
cyber-physical systems (Section 6.2).

6.1 Customizable Compiler Systems for Energy-efficient Computing at the Edge
An increasing number of application domains are being deployed at the edge. Some of these include augmented
and virtual reality (AR/VR), machine learning, data analytics, image and video processing. With this increasing
diversity in applications, compiler systems need to support a broad range of algorithms and operator types.

To enable energy-efficient computing for a wide range of domains, I envision a flexible compiler development
ecosystem that domain experts can use to configure custom compilers for new application domains. Making it
easier for domain experts to develop and extend compilers will help facilitate energy-efficient computing at
the edge. Towards this goal, I envision these opportunities:
• Domain-specific Optimization Opportunities. I envision compiler frameworks that give users the
flexibility to provide a list of domain-specific transformations in high-level specifications, while the com-
piler automatically discovers configurations of transformations that maximize energy-efficiency and/or
performance. For instance, experts can specify domain-specific rules for operator fusion, and the compiler
can automatically identify program-specific fusion opportunities that improve performance.

• Discovering Algorithms with Accuracy-Performance Tradeoffs. A non-trivial amount of developer
effort is required to identify low-level software and algorithmic knobs that offer accuracy-performance
tradeoffs. As compiler support is extended to new domains, we need mechanisms that exploit operator-
and algorithm-specific approximation opportunities with minimal supervision. I will investigate compiler
techniques that automatically discover approximate variants for algorithms that developers specify in high-
level domain-specific languages (DSLs).

4

• Efficient Code Generation Frameworks. Edge computing platforms are becoming increasingly hetero-
geneous. Many edge devices incorporate domain-specific hardware accelerators that support knobs for
controlling accuracy, performance, and energy tradeoffs. I will explore efficient code generation frameworks
that exploit the full potential for accuracy-aware optimization by simultaneously tuning software and
hardware approximation knobs. Moreover, since the choice of hardware resource usage parameters (e.g.,
tile sizes, scratchpad usage) significantly impacts performance, I envision these systems co-tuning hardware
resource parameters with algorithmic knobs for approximation.

• Enabling Energy-efficient Robust Systems. For safety critical domains such as autonomous driving,
and medical diagnosis, systems must be robust and secure in adversarial environments. I will investigate
compiler techniques that automatically navigate the inherent tradeoffs of energy, accuracy, and robustness
of edge systems.

For this line of research, I plan to collaborate with experts in emerging edge-focused application domains
such as augmented and virtual reality (AR/VR), natural language processing, and deep learning.

6.2 Systems for Efficient ML on Autonomous Cyber-physical Systems
Autonomous robots, drones, and vehicles (AVs) are increasingly employing deep neural network (DNN)
pipelines for on-device inference tasks. Running these compute-heavy inference tasks is a significant barrier
in adopting learning-based methods in cost-constrained domains, such as agriculture, forestry, delivery, and
mining. My goal is to design compiler and runtime systems that make it possible to deploy sophisticated
machine learning and control algorithms on such cost- and energy-constrained cyber-physical systems.
Towards this goal, I see these opportunities:

• Easy-to-Program Systems. I will investigate end-to-end compiler systems that will make it easier for
machine learning and robotics experts to program cyber-physical systems. I envision this to incorporate: a)
novel easy-to-program domain-specific languages that facilitate designing perception and control algorithms,
b) easy-to-configure optimization frameworks that allow experts to plug in domain- and application-specific
knowledge, and c) accuracy-aware code optimization frameworks that automatically navigate quality, perfor-
mance, and energy tradeoffs for algorithms and policy choices specified by domain experts.

• Task-aware Optimization Strategies. Autonomous planning and control systems usually include multiple
components that process and fuse different sensor modalities, including cameras, LIDAR, IMU, and range
sensors. I will investigate optimization systems that use task-aware optimization strategies to co-tune
machine learning models and other application components. I believe such systems will drive far more
significant benefits compared to tuning components in isolation.

• Application-Specific Dynamically Adaptable Systems. ApproxTuner [8] supports accuracy-aware
runtime tuning that counteracts slowdowns imposed by low-power and low-frequency modes. In the
future, I will explore customizable runtime systems that allow users to customize application-specific
dynamic control policies, while abstracting away model optimizations and system tuning that enables these
adaptations. For instance, users should be able to specify situations that require high-quality configurations
and others than require low energy consumption at the cost of some user-given acceptable loss in quality.

• Optimizing Cooperative Multi-Agent Robot Systems. Cooperative multi-agent robot systems are being
used in many domains, such as search and rescue, surveillance systems, and digital agriculture. I want
to explore compiler and runtime techniques that use computation and communication approximation
techniques to optimize the overall energy consumption and compute performance for a robot swarm, while
maintaining acceptable task quality.

REFERENCES
[1] 2021. Amazon SageMaker. https://aws.amazon.com/sagemaker/
[2] 2021. Domain-Specific System on Chip (DSSoC) Program. https://eri-summit.darpa.mil/docs/20180725_1100_DSSoC.pdf
[3] 2021. HPVM: Extending LLVM For Compiling to Heterogeneous Parallel Systems. https://archive.fosdem.org/2020/schedule/event/

llvm_hpvm/
[4] 2021. HPVM Public Release. https://gitlab.engr.illinois.edu/llvm/hpvm-release
[5] Aatira Anum Ahmad, Abdul Rafae Noor, Hashim Sharif, Usama Hameed, Shoaib Asif, Mubashir Anwar, Ashish Gehani, Junaid Haroon

Siddiqui, and Fareed M Zaffar. 2021. TRIMMER: An Automated System for Configuration-based Software Debloating. IEEE Transactions
on Software Engineering (TSE’21).

https://aws.amazon.com/sagemaker/
https://eri-summit.darpa.mil/docs/20180725_1100_DSSoC.pdf
https://archive.fosdem.org/2020/schedule/event/llvm_hpvm/
https://archive.fosdem.org/2020/schedule/event/llvm_hpvm/
https://gitlab.engr.illinois.edu/llvm/hpvm-release

Research Statement 5

[6] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018. TRIMMER: Application Specialization for Code
Debloating . (ASE’18) .

[7] Hashim Sharif, Prakalp Srivastava, Muhammad Huzaifa, Maria Kotsifakou, Keyur Joshi, Yasmin Sarita, Nathan Zhao, Vikram S. Adve,
Sasa Misailovic, and Sarita Adve. 2019. ApproxHPVM: A Portable Compiler IR for Accuracy-aware Optimizations. (OOPSLA’19) .

[8] Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Schreiber, Elizabeth Wang, Yasmin Sarita, Nathan Zhao, Keyur Joshi,
Vikram Adve, Sasa Misailovic, and Sarita Adve. 2021. ApproxTuner: A Compiler and Runtime System for Adaptive Approximations.
(PPoPP’21) .

[9] Hashim Sharif, Yifan Zhao, Peter Pao-Huang, Vatsin Ninad Shah, Arun Narenthiran, Mateus Valverde Gasparino, Nathan Zhao,
Abdulrahman Mahmoud, Sarita Adve, Girish Chowdhary, Sasa Misailovic, and Vikram Adve. 2022. ApproxCaliper: Optimizing Neural
Networks for Task-specific Goals. Under Review at USENIX ATC 2022.

	1 Research Overview
	2 ApproxHPVM: A Portable Compiler IR for Accuracy-Aware Optimizations
	3 ApproxTuner: A Compiler and Runtime System for Adaptive Approximations
	4 ApproxCaliper: Optimizing Neural Networks for Task-specific Goals
	5 TRIMMER: Application Specialization for Code Debloating
	6 Future Work
	6.1 Customizable Compiler Systems for Energy-efficient Computing at the Edge
	6.2 Systems for Efficient ML on Autonomous Cyber-physical Systems

	References

