
ApproxTuner: A Compiler and Runtime System
for Adaptive Approximations

Hashim Sharif
University of Illinois at
Urbana-Champaign, USA
hsharif3@illinois.edu

Yifan Zhao
University of Illinois at
Urbana-Champaign, USA
yifanz16@illinois.edu

Maria Kotsifakou
Runtime Verification, Inc., USA

maria.kotsifakou@runtimeverification.com

Akash Kothari
University of Illinois at
Urbana-Champaign, USA
akashk4@illinois.edu

Ben Schreiber
University of Illinois at
Urbana-Champaign, USA
bjschre2@illinois.edu

Elizabeth Wang
University of Illinois at
Urbana-Champaign, USA

eyw3@illinois.edu

Yasmin Sarita
Cornell University, USA

ycs4@cornell.edu

Nathan Zhao
University of Illinois at
Urbana-Champaign, USA

nz11@illinois.edu

Keyur Joshi
University of Illinois at
Urbana-Champaign, USA
kpjoshi2@illinois.edu

Vikram S. Adve
University of Illinois at
Urbana-Champaign, USA

vadve@illinois.edu

Sasa Misailovic
University of Illinois at
Urbana-Champaign, USA
misailo@illinois.edu

Sarita Adve
University of Illinois at
Urbana-Champaign, USA

sadve@illinois.edu

Abstract
Manually optimizing the tradeoffs between accuracy, perfor-
mance and energy for resource-intensive applications with
flexible accuracy or precision requirements is extremely diffi-
cult.We presentApproxTuner, an automatic framework for
accuracy-aware optimization of tensor-based applications
while requiring only high-level end-to-end quality specifi-
cations. ApproxTuner implements and manages approxima-
tions in algorithms, system software, and hardware.
The key contribution in ApproxTuner is a novel three-

phase approach to approximation-tuning that consists of dev-
elopment-time, install-time, and run-time phases. Our ap-
proach decouples tuning of hardware-independent and hard-
ware-specific approximations, thus providing retargetability
across devices. To enable efficient autotuning of approx-
imation choices, we present a novel accuracy-aware tun-
ing technique called predictive approximation-tuning, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00
https://doi.org/10.1145/3437801.3446108

significantly speeds up autotuning by analytically predicting
the accuracy impacts of approximations.
We evaluate ApproxTuner across 10 convolutional neu-

ral networks (CNNs) and a combined CNN and image pro-
cessing benchmark. For the evaluated CNNs, using only
hardware-independent approximation choices we achieve a
mean speedup of 2.1x (max 2.7x) on a GPU, and 1.3x mean
speedup (max 1.9x) on the CPU, while staying within 1 per-
centage point of inference accuracy loss. For two different
accuracy-prediction models, ApproxTuner speeds up tun-
ing by 12.8x and 20.4x compared to conventional empirical
tuning while achieving comparable benefits.

CCS Concepts: • Software and its engineering → Com-
pilers.

Keywords: Approximate Computing, Compilers, Heteroge-
neous Systems, Deep Neural Networks

1 Introduction
With the ubiquitous deployment of highly compute-intensive
machine-learning and big data processing workloads, opti-
mizing these workloads is becoming increasingly impor-
tant. A wide range of applications using these workloads
are being deployed on both the cloud and the edge, includ-
ing image processing, object classification, speech recogni-
tion, and face recognition [8, 43, 46]. Many of these work-
loads are very computationally demanding which makes
it challenging to achieve the desired performance levels
on resource-constrained systems.

https://doi.org/10.1145/3437801.3446108

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

Many modern machine learning and image-processing
applications are inherently “approximate” in the sense that
the input data are often collected from noisy sensors (e.g.,
image and audio streams) and output results are usually prob-
abilistic (e.g., for object classification or facial recognition).
Such applications can trade off small amounts of result quality
(or accuracy) for improved performance and efficiency [60],
where result quality is an application-specific property such
as inference accuracy in a neural network or peak signal-to-
noise ratio (PSNR) in an image-processing pipeline. Previ-
ous research has presented many individual domain-specific
and system-level techniques for trading accuracy for per-
formance. For instance, reduced precision models are wide-
spread in deep learning [3, 7, 14, 34, 45]. Recent specialized
accelerators incorporate hardware-specific approximations
that provide significant improvements in performance and
energy in exchange for relaxed accuracy [1, 2, 11, 29, 30, 48,
59]. Such techniques can provide a crucial strategy to achieve
the necessary performance and/or energy for emerging ap-
plications in edge computing.

In practice, a realistic application (e.g., a neural network or
a combination of an image processing pipeline and an image
classification network) can make use of multiple approxima-
tion techniques for different computations in the code, each
with its own parameters that must be tuned, to achieve the
best results. For example, our experiments show that for the
ResNet-18 network, which contains 22 tensor operations, the
best combination is to use three different approximations
with different parameter settings in different operations. A
major open challenge is how to automatically select, configure,
and tune the parameters for combinations of approximation
techniques, while meeting end-to-end requirements on energy,
performance, and accuracy.
To address this broad challenge, we need to solve sev-

eral specific challenges. First, the variety of software and
hardware approximation choices, and the tuning knobs for
each of them, induce a large search space for accuracy-aware
optimization – up to 791 configurations in our benchmarks.
Second, efficiently searching such large spaces is made even
more difficult because individual “candidate configurations”
(sample points in the search space) can be expensive to mea-
sure on edge systems for estimating accuracy, performance
and energy. For example, measurement-based (aka, “empiri-
cal”) tuning for the ResNet50 neural network took 11 days on
a server-class machine. Third, the diversity of hardware com-
pute units often used in edge-computing devices [63] yields
diverse hardware-specific approximation options with vary-
ing accuracy-performance tradeoffs. Moreover, optimiza-
tions in specialized hardware accelerators often create impor-
tant opportunities for orders-of-magnitude improvements.
These hardware-specific tuning opportunities are critical,
but difficult to exploit without sacrificing software portabil-
ity, which is crucial in some important domains, like mobile

devices. Fourth, the best accuracy-performance-energy trade-
offs may vary significantly at run time, depending on system
load, battery level, or time-varying application requirements.
1.1 ApproxTuner System
We present ApproxTuner, an automatic framework for
accuracy-aware optimization of tensor-based applications
(an important subset of edge computing applications). It finds
application configurations that maximize speedup and/or en-
ergy savings of an application, subject to end-to-end quality
specifications. It addresses all of the challenges above, and is
the first and only system to handle all of them, as we discuss
in Section 9.

Tensor computations are widely used in machine learning
frameworks, and many important domains such as image
processing, scientific computing, and others [3, 31–33]. Ap-
proxTuner focuses on tensor-based computations for two
reasons. First, limiting the system to these computations
enables algorithmic approximations specific to tensor opera-
tions (in addition to generic software and hardware approxi-
mations). Adding support for other classes of computations
can be done in a similar fashion, but is outside the scope of
this work. Second, many current and emerging hardware
accelerators focus on tensor computations [1, 2, 29, 30, 48],
enabling novel hardware-specific approximations for these
computations. ApproxTuner includes support for a novel ex-
perimental, analog-domain accelerator [59] that exemplifies
such approximation opportunities and associated challenges.

ApproxTuner tackles the last two challenges above — and
enables hardware-specific, yet portable, tuning and run-time
adaptation – by decomposing the optimization process into
three stages: development-time, install-time and run-time.
At development time, ApproxTuner selects hardware-inde-
pendent approximations and creates a tradeoff curve that
contains the approximations with highest quality and per-
formance ApproxTuner found during search. At install time,
the system refines this curve using hardware-specific opti-
mizations and performance measurements. The final tradeoff
curve is included with the program binary. The program can
use the refined curve for the best static choices of approxima-
tions before the run, and it can further adapt these choices
using the same curves based on run-time conditions. Us-
ing the final tradeoff curve at run-time as well keeps the
overheads of run-time adaptation negligible.
ApproxTuner tackles the first two challenges – and en-

ables efficient navigation of the large tradeoff space and effi-
cient estimation of performance and quality by introducing
novel predictive approximation-tuning. Predictive approxi-
mation-tuning uses one-time error profiles of individual
approximations, together with error composition models
for tensor-based applications, to predict end-to-end appli-
cation accuracy. ApproxTuner also facilitates distributed
approximation-tuning since the error profile collection can
happen at multiple client devices, while a centralized server

ApproxTuner PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

can perform time-intensive autotuning. It makes install-
time tuning (with hardware-specific approximations) fea-
sible which would otherwise be prohibitively expensive on
a single resource-constrained edge device.
1.2 Contributions
In summary, our contributions are:
• A system that combines a wide range of existing hard-
ware, software and algorithmic approximations, supports
diverse heterogeneous systems, and provides an easy-to-
use programming interface for accuracy-aware tuning.
Our results show that different kinds of approximations
and approximation knobs are best suited for different ap-
plications and also across sub-computations in the same
application.

• A novel three-phase accuracy-aware tuning technique that
provides performance portability, retargetability to com-
pute units with hardware-specific approximation knobs,
and dynamic tuning. It splits tuning into: 1) construction
of tradeoff curves for hardware-independent approxima-
tions at development-time, 2) mapping to hardware-specific
approximations at install-time, and 3) a fast approximation
selection at runtime.

• A novel predictive approximation-tuning technique that
uses compositionalmodels for accuracy prediction to speed
up both development-time and install-time tuning. For
two different accuracy-prediction models, our predictive
tuning strategy speeds up tuning by 12.8x and 20.4x com-
pared to conventional empirical tuning while achieving
comparable benefits.

• Experimental evaluation for 11 benchmarks – 10 CNNs and
1 combined CNN + image processing benchmark – shows:
Hardware-independent Approximations. When using
only hardware-independent approximations, ApproxTuner
achieves geomean speedup of 2.1x and energy reduction of
2x on GPU, geomean speedup of 1.3x and energy reduction
of 1.3x on CPU, with 1 percentage point accuracy loss.
HardwareApproximations.At install time, ApproxTuner
maps tensor operations to an energy-efficient analog com-
pute accelerator, PROMISE, and provides a geomean en-
ergy reduction of 3.25x (across benchmarks) with 1 per-
centage point drop in inference accuracy. ApproxTuner
exploits such hardware-specific approximations without
sacrificing object-code portability.
Runtime Adaptation for Approximations. To counter-
act performance slowdowns imposed by runtime condi-
tions such as low-power modes, ApproxTuner can dy-
namically tune approximation knobs with extremely low
run-time overheads, by using tradeoff curves shipped with
the application binary.

2 ApproxTuner Overview
Figure 1 shows the high-level workflow for ApproxTuner. Ap-
proxTuner builds on the HPVM and ApproxHPVM compiler

Fig. 1. ApproxTuner workflow.

systems [35, 57], which are briefly described below. Approx-
Tuner takes as input programs written in Keras or PyTorch
for convolutional neural networks, or CNNs, or an extension
of C that can be compiled to HPVM [35] (for other tensor-
based programs), and compiles them to the ApproxHPVM
internal representation (IR) [57]. ApproxHPVMmanages the
compilation to various compute units (Section 2.1). Approx-
Tuner optimizes the computations in this IR using three
phases: 1) development-time, 2) install-time, and 3) run-time
(Section 2.2). ApproxTuner’s goal is to select combinations
of software and hardware approximations (detailed in Sec-
tion 2.3) thatmeet performance, energy, and accuracy targets.
2.1 Preliminaries and Terminology
HPVM and ApproxHPVM. HPVM IR is a dataflow graph-
based parallel program representation that captures coarse-
and fine-grain data and task parallelism [35]. HPVM provides
a portable IR and a retargetable compiler framework that can
target diverse compute units, e.g., CPUs, GPUs and FPGAs.
ApproxHPVM extends HPVM with support for tensor

operations and limited support for accuracy-aware tuning
(see Section 9) [57]. The tensor operations represent data-
parallel computations on tensors, commonly used in CNNs
and image processing applications. ApproxHPVM also adds
back-ends to the HPVM system for a few custom machine
learning accelerators/ libraries, including one for cuDNN
on NVIDIA GPUs and one for a programmable analog in-
memory compute accelerator called PROMISE [59].
This work focuses on approximations for a set of prede-

fined tensor operations included in ApproxHPVM, such as
convolutions, matrix multiplication, ReLU, map, and reduce.
We refer to Sharif et al. [57, Table 1] for the definition of these
operations in ApproxHPVM. These operations are the units
of scheduling and approximation in ApproxTuner, where a
schedule is a mapping of tensor operations to compute units
in the target system. Hardware-independent approximations
for an operation are those whose impact on the outputs (i.e.,

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

the semantics) of a program is fixed, regardless of the hard-
ware used to execute the operation. Examples include filter
sampling, perforated convolutions, and reduced precision,
described below (Section 2.3). Some approximations, like
the use of (IEEE) FP16 instead of FP32 may have hardware-
independent semantics, and yet may be implemented in hard-
ware for efficiency (in fact, they may be too inefficient to
use without hardware support, possibly making them non-
portable). Other approximations are called hardware-specific;
the output quality impact of these approximations is spe-
cific to the choice of hardware used. The impact on energy
and performance will usually be hardware-dependent for all
kinds of approximations.
Quality of Service. A quality-of-service (QoS) metric is a
(usually domain-specific) metric over the outputs of some
computation, such as inference accuracy or PSNR. The QoS
metric function tor a tensor-based program, 𝑄𝑜𝑆 : 𝑇out ×
𝑇gold → R takes the output tensor 𝑇out and the exact output
𝑇gold, and produces a scalar value.

A QoS constraint is a constraint over the QoS level of an
application. As higher is conventionally better for QoS, we
assume a QoS constraint is a lower bound; the opposite case
can be treated similarly.
Knobs, Configurations, and Tradeoff Curves. An ap-
proximation knob is a discrete-valued parameter of an ap-
proximation method (represented using integers in Approx-
Tuner) that can be modified to control the quality, energy,
and running time. A zero value denotes no approximation.

Each tensor operation may be assigned an approximation
choice or none. A configuration is a map Config : 𝑜𝑝 → Int
that assigns an approximation knob value to every tensor
operation in the program. The search space is the set of all
possible configurations.

A tradeoff point is a triple, (QoS, Perf, config), which speci-
fies the quality-of-service and the performance of the con-
figuration on specified inputs. The set of all tradeoff points,
denoted S, represents the tradeoff space. To compare trade-
off points, we define a dominance relation (≼) in the usual
way [18]: a point 𝑠1 = (QoS1, Perf1, config1) is dominated by
a point 𝑠2 = (QoS2, Perf2, config2) iff it has both lower QoS
and worse performance. Formally, 𝑠1 ≼ 𝑠2 iff QoS1 ≤ QoS2
and Perf1 ≤ Perf2. Strict dominance, 𝑠1 ≺ 𝑠2, is defined as
dominance when the two points have unequal QoS or Perf.

A search algorithm explores a subset of the tradeoff space
𝑆 ⊆ S to find desirable tradeoff points. One way to describe
desirable points is through Pareto sets. A Pareto set of a set 𝑆
is its subset that consists of non-dominated points:

𝑃𝑆 (𝑆) = { 𝑠 | 𝑠 ∈ 𝑆 ∧ ∀𝑠 ′ ∈ 𝑆 . 𝑠 ⊀ 𝑠 ′ } (1)

This set defines a tradeoff curve, which contains linear seg-
ments between the points in the Pareto set. Intuitively, these
points have the best tradeoffs that the search algorithm was
able to find. We describe how to select the configurations
or combinations of configurations from a tradeoff curve in

Section 5. We also define a relaxed version of the curve,
𝑃𝑆𝜀 , which includes tradeoff points that are within 𝜀 distance
from points in the Pareto set:

𝑃𝑆 𝜀 (𝑆) = { 𝑠 | 𝑠 ∈ 𝑆 ∧ ∃𝑠∗ ∈ 𝑃𝑆 (𝑆) . dist(𝑠, 𝑠∗) ≤ 𝜀 } (2)

Here, dist is the usual Euclidean distance in the tradeoff space.
2.2 Overview of Three Stages of ApproxTuner
Our goal is to automatically select approximation knobs
that minimize energy and/or maximize performance for a
given program or its component, while satisfying some user-
specified end-to-end QoS constraint. We refer to this task as
approximation-tuning and do it in three stages:
The development-time stage (Section 3) computes a

tradeoff curve using only hardware-independent approxima-
tions. ApproxTuner takes as input a program and a QoS con-
straint, and generates a set of possible configurations, 𝑆0, that
optimize a hardware-agnostic performance metric (e.g., oper-
ation count) and produce QoS values within the constraint. In
practice, the QoS and performance calculated at development
time can be imprecise because they use hardware-agnostic
estimates of performance (e.g., operation count) and option-
ally of accuracy (with predictive tuning). To make it more
likely we will capture points with good measured QoS and
performance, we create the relaxed tradeoff curve, 𝑃𝑆𝜀 (𝑆0),
which is shipped with the application.

The install-time stage (Section 4) uses the development-
time tradeoff curves and measures the actual performance
of each configuration in those tradeoff curves on the target
hardware. Next, we create a refined tradeoff curve, 𝑃𝑆 (𝑆∗),
where 𝑆∗ is the 𝑃𝑆𝜀 curve from development-time updated
with real performance measurements. This stage can be run
any time that the target hardware is available.

If hardware-specific approximations (not known at devel-
opment time) are available, which may also change the QoS
metrics, the install-time stage performs a new autotuning
step that includes the hardware approximations and gener-
ates a new tradeoff curve.

The run-time stage (Section 5) takes the program’s final
tradeoff curve from the install-time phase and uses it for
dynamic approximation tuning. The system can track various
metrics (e.g., load, power, and frequency variations) and
provide feedback to the dynamic control, which computes a
target speedup (and configuration) to maintain the required
level of performance.
2.3 Approximation Methods
ApproxTuner is extensible to a wide range of software and
hardware approximations. This work evaluates five approxi-
mations below – the first three are software (hardware-inde-
pendent) techniques implemented for CPUs and GPUs; the
fourth is a previously proposed experimental hardware ac-
celerator representing a hardware-specific approximation;
and the fifth (reduced floating point precision, IEEE FP16)
has hardware-independent semantics.

ApproxTuner PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Filter sampling for convolutions. Li et al. [42] proposed
an approximation technique that compresses convolution
filters by removing feature maps (i.e., channels) that have
relatively low L1-norms (sum of absolute values). Based on
this, we implement our own variant of filter sampling that
supports dynamic knobs for approximation. Our implemen-
tation prunes an equal fraction of filter elements across all
feature maps with a fixed stride. We vary the initial offset at
which elements are skipped; this has a noticeable impact on
overall accuracy, as different offsets align with more or less
important filter elements. This approximation has 9 knob
settings in all: i) three possible sampling rates: 50% (skip 1
out of 2), 33% (skip 1 out of 3), and 25% (skip 1 out of 4) and
ii) offset values of 0...𝑘 − 1 for a skip rate of 1-out-of-𝑘 .
Perforated convolutions. Figurnov et al. [17] proposed
perforated convolutions; an algorithmic approximation that
computes a subset of the convolution output tensor, and
interpolates the missing values using nearest neighbor av-
eraging of computed tensor elements. Our implementation
skips rows and columns of the tensor operation outputs at a
regular stride (again, with varying initial offsets), then inter-
polates the missing output elements. It has 18 knob settings
in all: 1) skipping rows or columns, 2) skip rate (1-out-of-𝑘):
50%, 33%, and 25%, and 3) 𝑘 choices of initial offset.
Reduction sampling. Zhu et al. [67] proposed reduction
sampling; an algorithmic approximation that computes a
reduction operation using a subset of inputs. Our implemen-
tation supports 3 knob values for sampling ratio: 50%, 40%,
and 25%. For reductions like average, sum, or multiply, we
scale the result by an appropriate constant.
PROMISE, an approximate analog accelerator. [59]. Our
system considers PROMISE for tensor convolutions and ma-
trix multiplications. PROMISE is an analog chip and its volt-
age swings introduce statistical (normally distributed) errors
in the output values. The knob values are 7 different voltage
levels (P1-P7), in increasing order of voltage (energy) and de-
creasing error. No mode in PROMISE produces exact results;
all voltage levels introduce some errors. Srivastava et al. [59]
show that PROMISE consumes 3.4-5.5x less energy and has
1.4-3.4x higher throughput compared even to fully-custom
non-programmable digital accelerators.
IEEE FP16. Our implementation has FP16 versions of all
tensor operations, including FP16 variants for each of the
knobs supported by filter sampling, perforated convolutions,
and reduction sampling. FP16 can be used or not for an
operation; there is no additional knob value, though it can
combine with other approximation knobs. For instance, both
FP16 and 50% filter sampling can be applied to a convolution
operation. Although FP16 requires hardware support, its
semantics (impact on QoS) are hardware-independent and
hence can be accounted for in the development stage.

The above set offers many choices for approximation. For
each convolution operation, ApproxTuner offers 9 knobs for

filter sampling, 18 knobs for perforation, and for each per-
foration/sampling knob, both FP32 and FP16 are supported.
Convolution operations can also be mapped to an FP32-only
(considered most-accurate) or FP16-only variant - adding 2
more knobs. PROMISE hardware offers 7 knobs. Currently,
we do not combine perforation, sampling, and PROMISE at
the same operation. In total, there are 63 = (9 * 2 + 18 * 2 + 2
+ 7) knobs for each convolution operation, 8 = 3 * 2 + 2 knobs
for each reduction, and 2 choices for other tensor operations.
3 Development-time Tuning
At development time, we tune the application for hardware-
independent approximations. We propose predictive approxi-
mation tuning, which decomposes tuning into a profile col-
lection phase and an autotuning phase. In profile collection
phase, one operation at a time is approximated and its impact
on QoS and performance is measured. The autotuning phase
uses these profiles and compositional models to predict the
end-to-end QoS and performance impact of multiple approx-
imations applied simultaneously, and uses these to guide
the autotuning search. This approach does not invoke the
program binary for every autotuning iteration. In contrast,
conventional empirical autotuning evaluates a configuration
by actually running the program binary (e.g., CNN inference)
which can be expensive, especially when many autotuning
iterations are required to explore large search spaces.
3.1 Overview of Predictive Tuning
Algorithm 1 describes our predictive approximation tuning
in the function PredictiveTuner. It consists of five steps:
• Profile collection: Lines 12-15 in Algorithm 1 collect a
QoS profile for the given application per operation, per
knob setting (§ 3.2).

• QoS predictor refinement: Lines 18-20 refine a param-
eter 𝛼 of the QoS prediction model (§ 3.3) used in the fol-
lowing autotuning, so that the predictor fits better to the
program to be tuned.

• Autotuning: Lines 23-30 invoke an off-the-shelf auto-
tuner to heuristically explore the configuration space. The
QoS prediction model (§ 3.3) and performance prediction
model (§ 3.4) direct this search towards better configura-
tions. We use the OpenTuner tool [5] which supports mul-
tiple algorithms for exploring large configuration spaces.
It uses the estimates of QoS and performance from our
models to calculate the fitness of the current configuration
and select the next one.

• Tradeoff curve construction: Line 33 selects autotuning
configurations that are in or close to the Pareto set (§ 3.5).

• QoS validation: Lines 36-40 empirically measure the QoS
of configurations in the previous step, and select configu-
rations with measured QoS greater than threshold.
Our presentation focuses on time savings. Our autotuning

can be directly adapted for tuning other goals such as energy
savings by providing a corresponding prediction model.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

Algorithm 1: Predictive Approximation Tuning
1 Inputs:
2 • P: target program
3 • C: calibration inputs for profiling
4 • K: knobs that apply to each operator in P
5 • QoSmin: minimal acceptable QoS
6 • nCalibrate: number of calibration runs used to tune 𝛼
7 • nIters: number of autotuning iterations
8 • 𝜀1, 𝜀2: maximum distances of a configuration to the Pareto set
9 Output: A tradeoff curve for P

10 Function PredictiveTuner(P,C,K,QoSmin,nCalibrate,nIters,𝜀1,𝜀2)
11 // Step 1: Collect QoS Profile
12 map qosProfiles;
13 foreach (op, knob) ∈ K do
14 (Δ𝑄 , Δ𝑇) = gatherQoSProfile(P, C, op, knob);
15 qosProfiles[(op, knob)] = (Δ𝑄 , Δ𝑇);
16

17 // Step 2: Initialize and tune predictor to find coefficient 𝛼
18 autotuner = AutoTuner (P, K, nIters, QoSmin);
19 predictor = Predictor (qosProfiles);
20 𝛼 = predictor.calibrate (autotuner, nCalibrate);
21

22 // Step 3: Autotune with QoS and perf. prediction models
23 set candidateConfigs;
24 while autotuner.continueTuning() do
25 config = autotuner.nextConfig();
26 predQoS = predictor.calculateQoS (config, 𝛼);
27 predPerf = predictor.calculatePerf (config);
28 autotuner.setConfigFitness (config, predQoS, predPerf);
29 if predQoS > QoSmin then
30 candidateConfigs ∪= (predQoS, predPerf, config);
31

32 // Step 4: Take configs within 𝜀 distance of the tradeoff curve
33 paretoConfigs = 𝑃𝑆𝜀1 (candidateConfigs);
34

35 // Step 5: Filtering invalid configurations at the end of tuning
36 set filteredConfigs;
37 foreach (predQoS, predPerf, config) ∈ paretoConfigs do
38 realQoS = measureRealQoS (P, C, config);
39 if realQoS > QoSmin then
40 filteredConfigs ∪= (realQoS, predPerf, config);
41 return 𝑃𝑆𝜀2 (filteredConfigs) ;

3.2 Gathering QoS Profiles
QoS profiles are gathered for each unique pair of tensor op-
eration and approximation knobs. Algorithm 1 infers (Line
13) a list of such (op, knob) pairs from the input 𝐾 , which
is a mapping from each tensor operation in program 𝑃 to
the set of knobs applicable to it. The profiles are collected
by running the entire program (with calibration inputs) but
we approximate a single operator at a time.

The QoS profile consists of: 1) an end-to-end QoS met-
ric, e.g., classification accuracy in CNNs or mean square
error (see Section 6), and 2) final raw tensor output of the
application, e.g., for CNNs, output of the softmax operation.
The profiles are stored as two tables𝑄 and𝑇 .𝑄 maps (op, knob)
to the corresponding end-to-end QoS. 𝑇 maps (op, knob) to
the raw tensor output 𝑇out. We also measure and store the
QoS and raw tensor output of the baseline version, which has
no approximations, denoted as𝑄𝑜𝑆base and 𝑇base, respectively.

3.3 Models for QoS Prediction
We propose and evaluate two error composition models Π1
and Π2, for a program 𝑃 and configuration config ∈ Config:

Π1 (config) = 𝑄𝑜𝑆
©­«𝑇base + 𝛼 ·

∑
𝑜𝑝∈𝑃

Δ𝑇 (𝑜𝑝, 𝑘𝑛𝑜𝑏) , 𝑇gold
ª®¬

Π2 (config) = 𝑄𝑜𝑆base + 𝛼 ·
∑
𝑜𝑝∈𝑃

Δ𝑄 (𝑜𝑝, 𝑘𝑛𝑜𝑏)

where 𝑘𝑛𝑜𝑏 = config(𝑜𝑝), 𝛼 is the coefficient to be refined, and
Δ𝑇 (𝑜𝑝, 𝑘𝑛𝑜𝑏) = 𝑇 (𝑜𝑝, 𝑘𝑛𝑜𝑏) −𝑇base,
Δ𝑄 (𝑜𝑝, 𝑘𝑛𝑜𝑏) = 𝑄 (𝑜𝑝, 𝑘𝑛𝑜𝑏) −𝑄𝑜𝑆base,

The model Π1 computes the QoS of a configuration by
1) summing the errors in the end-to-end raw tensor outputs
for each (𝑜𝑝, 𝑘𝑛𝑜𝑏) pair in config, 2) adding this sum to the
baseline raw tensor output (𝑇base), and then 3) computing the
QoS relative to the exact output (𝑇gold). The model captures
how approximations affect the errors in the raw output (for
a single approximation) and sums the effects of all, before
applying the QoS function. Model Π1 works well with classi-
fication accuracy (as QoS metric) in scenarios where relative
probabilities of predicted class(es) remain mostly unchanged
despite changes in the absolute output values.
The model Π2 is a coarser-grained model that does not

examine individual tensor outputs. Instead, it uses QoS pro-
file table, 𝑄 , to compute the QoS loss of a configuration by
summing over the end-to-end QoS loss for each (𝑜𝑝, 𝑘𝑛𝑜𝑏)
pair in config. Π2 (which only sums scalar losses) is compu-
tationally less expensive than Π1 (which sums raw tensors),
but is also relatively less precise, as shown in our evaluation.
The scope of these models is discussed in Section 8.
Predictor Calibration using Regression. Both Π1 and
Π2 can be viewed as linear regression models with a sin-
gle coefficient 𝛼 that scales the errors of each error pro-
file. This coefficient allows the predictor to adapt to spe-
cific error propagation within the application. On Line 20,
predictor.calibrate evaluates the real QoS of a small num-
ber of configurations (e.g., 50 are sufficient in our exper-
iments), and updates 𝛼 so that the predicted QoS fits the
observed QoS better.
3.4 Models for Performance Prediction
To guide the tuner, we use a simple hardware-agnostic perfor-
mance prediction model. As a proxy for execution time, we
use the count of compute and memory operations, computed
analytically for each tensor op with closed-form expressions
using input tensor sizes, weight tensor sizes, strides, padding,
etc. This calculation has negligible cost.

The total predicted execution cost of a configuration is the
sum of the cost for each operator with the knob the tuner
selected. This is computed as:

𝐶𝑜𝑠𝑡Total (config) =
∑

(𝑜𝑝,knob) ∈config
𝐶𝑜𝑠𝑡 (𝑜𝑝, 𝑘𝑛𝑜𝑏).

ApproxTuner PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

We assume the compute and memory operation count is
reduced by a factor that is proportional to the approxima-
tion level (e.g., 50% vs 25% perforation). Thus, we estimate
execution time of running operator op with approximation
knob knob by:

𝐶𝑜𝑠𝑡 (op, knob) = 𝑁𝑚 (op)
𝑅𝑚 (knob) +

𝑁𝑐 (op)
𝑅𝑐 (knob)

, (3)

where 𝑁𝑐 and 𝑁𝑚 are the analytically-computed number
of compute and memory operations, respectively, for the
baseline (non-approximate) version of 𝑜𝑝 . 𝑅𝑚 and 𝑅𝑐 are
the corresponding reduction factors and are specific to the
selected approximation knob. For example, for FP16 50% filter
sampling, 𝑅𝑚 = 4 since the operator loads 2× fewer bytes
due to FP16 and performs 2× fewer loads due to sampling,
and has 𝑅𝑐 = 2 since it skips half the computations.

The number of compute and memory operations does not
perfectly reflect actual speedup, as other factors change with
the size of computation, such as cache friendliness. However,
for the same operator, an approximation that reduces more
compute andmemory operations is likely faster than one that
reduces fewer such operations. Therefore, this performance
predictor ranks configurations correctly by their speedup,
which suffices for autotuning purposes.
3.5 Constructing Tradeoff Curve
Autotuning (Lines 23-30 of Algorithm 1) often discovers
many candidateConfigs. On Line 33, points in the Pareto
set or with distance to the Pareto set less than 𝜀1 are kept
(by Equation 2). This step serves the purpose of reducing
the overhead of QoS validation (Line 36- 40), by filtering
away configurations that are not in or close to the Pareto set.
𝜀2 controls the configuration selection after QoS validation
(Line 41). Using 𝜀1 to filter configurations reduces the number
of configurations that are empirically evaluated to measure
the real QoS. However, if many configurations are filtered
(Lines 36- 40), this can potentially result in a very small set
of valid configurations. Setting 𝜀2 to be higher (or equal) to
𝜀1 adds flexibility for including more points in the shipped
tradeoff curve. Thus 𝜀1 and 𝜀2 give the developer the ability
to control the quality and the size of tradeoff curve and the
time of our three-stage tuning.
Since FP16 availability is not guaranteed on each hard-

ware platform, we allow users to tune the program with and
without FP16 support, creating two separate curves - one
each for FP32 and FP16. Users can simply ship a single curve
if FP16 hardware availability is known ahead of time.
4 Install-time Tuning
The install-time tuning phase takes the tradeoff curve from
the development-time tuning (𝑃𝑆 𝜀), together with the same
calibration inputs for profiling (𝐶), hardware-specific knobs
(𝐾) for each operator on the edge device, the number of edge
devices 𝑛edge that participate in the distributed tuning pro-
cess, and the other parameters from the development-time

tuning. This step refines the shipped tradeoff curves with
real performance (or other properties, such as energy us-
age) measurements and creates a new tradeoff curve. When
hardware-specific approximations exist on the target plat-
form, distributed predictive tuning is invoked to further op-
timize the program by exploiting those approximations, as
described below.
Software-only knobs. In this case, all steps are done on the
edge-device. It runs the configurations from the input trade-
off curve 𝑃𝑆 𝜀 on the inputs from 𝐶 , and measures both the
real QoS and performance (development-time stage collected
only QoS, but lacks access to real edge hardware to measure
real performance), and filters the configurations that do not
satisfy the thresholds. Finally, for the resulting filtered set 𝑆∗
it constructs the final tradeoff curve 𝑃𝑆 (𝑆∗), which has only
the points with best measured QoS-performance tradeoffs.
Hardware-specific knobs.We distribute predictive tuning
across the server and edge-devices in three main steps, in or-
der to reduce the profiling and validation burden per device:
• This phase is distributed across edge-devices. Each de-
vice gathers profiles for |𝐶 |/𝑛edge calibration inputs. For
hardware-specific approximations in 𝐾 , the devices collect
the QoS profiles as in Lines 12-15 from Algorithm 1.

• The edge-devices send the QoS profiles to a centralized
server. It merges the profiles – taking the mean of Δ𝑄
(change of QoS) in the profile, while concatenating the Δ𝑇
(change of tensor output) together. It then runs the predic-
tive tuning as in Lines 18-30 fromAlgorithm 1. Because the
approximation choices cannot be decoupled (as we found
in initial prototype experiments), we cannot simply reuse
the curve from development-time, but instead perform a
fresh autotuning step that combines software and hard-
ware approximations and constructs a new tradeoff curve.

• The server sends the configurations to the edge-devices.
Each edge device validates an equal fraction of the total
configurations and filters the configurations by measuring
both the real QoS and performance (similar to Lines 36-40
in Algorithm 1).

• The server receives the filtered configurations from each
of the participating edge devices and computes the final
tradeoff curve, 𝑃𝑆 (𝑆∗1 ∪ 𝑆∗2 ∪ ... ∪ 𝑆∗𝑛), where 𝑆∗𝑖 are Pareto
sets returned by edge device 𝑖; these are configurations
with measured QoS higher than the user-specified QoS
threshold. This is the final curve that the server sends
back to the devices.

5 Runtime Approximation Tuning
A key capability of ApproxTuner is the ability to adapt ap-
proximation settings at run-time to meet application goals
such as throughput or responsiveness, in the face of changing
system conditions such as load variation, frequency scaling
or voltage scaling, or changing application demands. Our
runtime control assumes that the program is running in iso-
lation on the target hardware. Significant prior work has

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

addressed the problem of multi-tenancy (e.g., [66] and can
be incorporated in our approach.
ApproxTuner allows users to specify a desired target for

performance, and then uses the tradeoff curve 𝑃𝑆 (built at
install-time) to select configurations that allow for meeting
these goals. Runtime conditions (e.g., lowering processor fre-
quency) can impose system slowdowns which may cause the
application performance to fall below the desired target. In
these scenarios, the dynamic tuner switches configurations
to choose a different point from the performance-accuracy
tradeoff space.

A key property of all our approximation techniques is that
the different approximation knob settings are simply numer-
ical parameters to the tensor operations (e.g., perforation
and sampling rates). Therefore, the runtime tuner can switch
between configurations with negligible overhead, simply by
using different parameter values each time.
Performance is measured for each invocation, which is

one execution of the target code, e.g., the entire CNN or
entire image-processing pipeline (for one batch of images).
A system monitor measures the execution time over a (con-
figurable) sliding window of 𝑁 most recent batch executions
(𝑘 − 𝑁 , . . . , 𝑘 − 2, 𝑘 − 1). If the average performance of the
sliding window executions falls below the desired target, the
dynamic tuner is invoked. In this case, ApproxTuner chooses
a configuration from the tradeoff curve that provides the
speedup necessary to achieve the target performance level.
One challenge is that there may not be an exact point

matching the desired speedup in the tradeoff curve, so our
system allows the user to select between two policies for
achieving the target performance, PerfT:
1. Enforce Required Speedup in each Invocation. Picks

a configuration with performance no smaller than PerfT.
This is a 𝑂 (log(|𝑃𝑆 |) operation, using binary search.

2. AchieveAverageTarget Performance overTime. Pro-
babilistically selects between two configurations, with per-
formance the closest below and above PerfT over a time
interval (on average). The selection probabilities, 𝑝1 and
𝑝2, are such that 𝑝1 ·Perf1+𝑝2 ·Perf2 = PerfT, as in [67]. For
instance, if PerfT = 1.3x and the closest points provide 1.2x
and 1.5x speedup, these two configurations are randomly
selected with respective probabilities 2/3 and 1/3.

Policy 1 is less flexible and is better suited for hard or soft
real-time systems, where deadlines are important. Policy 2
is a better choice when application throughput is a goal.
6 Evaluation Methodology
Benchmarks. We use several CNNs (Table 1) and an image
processing benchmark that combines a CNN (AlexNet2) with
the Canny [10] edge detection pipeline.
Datasets.We use MNIST [40], CIFAR-10 [36] and the Ima-
geNet dataset ILSVRC 2012 [53], each with 10K images. For
ImageNet, we use 10K randomly sampled images (from 200

randomly selected classes) from its test set of 50K images. We
divide the 10K images into calibration set (for autotuning)
and test set (for evaluation), with 5K images each.
Table 1. CNN benchmarks, their datasets, layer count, classifi-

cation accuracy with FP32 baseline, and size of auto-tuning search
space.

Network Dataset Layers Accuracy Search Space
AlexNet [37] CIFAR-10 6 79.16% 5e+8
AlexNet [37] ImageNet 8 55.86% 5e+8
AlexNet2 CIFAR-10 7 85.09% 2e+10

ResNet-18 [24] CIFAR-10 22 89.44% 3e+22
ResNet-50 [24] ImageNet 54 74.16% 7e+91
VGG-16 [58] CIFAR-10 15 89.41% 3e+22
VGG-16 [58] ImageNet 15 72.88% 3e+22

MobileNet [28] CIFAR-10 28 83.69% 1e+26
LeNet [39] MNIST 4 98.70% 3e+3

6.1 Quality Metrics
For CNNs, we measure accuracy degradation with respect
to the baseline, denoted Δ𝑄𝑜𝑆𝑥% for a degradation of 𝑥%.
For the image processing benchmark, we use average PSNR,
between the output images 𝑥 and ground truth images 𝑥0:

𝑃𝑆𝑁𝑅(𝑥, 𝑥0) := −10 log10
∑
𝑖

(𝑥 [𝑖] − 𝑥0 [𝑖])2

(𝑃𝑆𝑁𝑅𝑦 denotes a PSNR of 𝑦.) A higher PSNR implies better
image quality. The predictive models use the mean square
error (exponential of PSNR) as the QoS metric.
Baseline: For our baseline, we map all computations to FP32
with no approximations.
6.2 Implementation
Our tensor library, targeted by our compiler back ends, uses
cuDNN for most tensor operators, but cannot use it for con-
volutions because it is proprietary and we cannot modify it
to implement custom algorithms for perforation and sam-
pling. Instead, we developed a hand-optimized convolution
operator using CUDA, and optimized using cuBLAS, mem-
ory coalescing, and tuning hardware utilization, thread di-
vergence, and scratchpad usage. Our CPU implementations
vectorize tensor processing loops using OpenMP.
6.3 Hardware Setup
Client Device Setup. Our client device (Table 2) is the
NVIDIA Jetson Tegra TX2 board [49], commonly used in
robotics and small autonomous vehicles [47, 62].

Wemodel an SoC that adds to the TX2 a simulated PROMISE
accelerator formachine learning [59]. GPU, CPU, and PROMISE
communicate through global shared memory. We use a split
approach for profiling. We measure performance and power
via direct execution on the GPU and CPU. Our profiler con-
tinuously reads GPU, CPU and DRAM power from Jetson’s
voltage rails via an I2C interface [50] at 1 KHz (1 ms period).
Energy is calculated by integrating the power readings using
1 ms timesteps. To model PROMISE, we use the functional
simulator and a validated timing and energy model [59].

ApproxTuner PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Table 2. System parameters for the Edge Device. NVIDIA
Tegra TX2 board including simulated PROMISE accelerator on chip.

Tegra TX2 PROMISE
CPU Cores 6 Memory Banks 256 × 16 KB
GPU SMs 2 Frequency 1 GHz

CUDA Cores 256
GPU Frequency 1.12 GHz

DRAM Size 8 GB

Server Setup.Weuse a server-classmachine for development-
time tuning and for coordinating install-time distributed pre-
dictive tuning. It includes two NVIDIA GeForce 1080Ti GPUs
each with 3584 CUDA cores and 11GB of global memory, 20
Intel Xeon cores (2.40GHz) and 65GB RAM.
6.4 Autotuning Setup
For autotuning search, we use the OpenTuner [5] library.
For both empirical and predictive tuning, we use the default
OpenTuner setting that uses an ensemble of search tech-
niques including Torczon hillclimbers, variants of Nelder-
Mead search, a number of evolutionary mutation techniques,
and random search. For each QoS threshold, we run the tuner
for a maximum of 30K iterations. We declare convergence
if tuning result does not improve over 1K consecutive itera-
tions. The number of iterations required per QoS threshold
varies across benchmarks, from 1K (LeNet) to 28K (ResNet-
50). Predictive and Empirical tuning convergence rates are
similar across all benchmarks with an average 8.7K iterations,
and 8.2K iterations, respectively.
Selecting Configurations for Shipping. Before QoS vali-
dation, we select configurations that lie within an 𝜀1 distance
to the Pareto set (Line 33 of Algorithm 1); after autotuning,
we select and ship configurations within 𝜀2 distance to the
Pareto set (Line 41). These distance thresholds, 𝜀1 and 𝜀2, are
computed per benchmark to limit the maximum number of
configurations validated and shipped. We chose 𝜀1 and 𝜀2 so
that at most 50 configurations are retained.
Distributed Predictive Tuning Setup. We emulate a set-
ting with 100 edge devices and a single-server coordinator.
Lacking 100 TX2 boards, we measure performance on 1 (out
of 100) distributed invocations on the actual TX2 hardware,
for 1/100 of the total calibration inputs. Remaining 99 dis-
tributed invocations are emulated on the server.
Runtime Approximation Tuning. On the Tegra TX2, we
vary GPU frequency to mimic low-power execution modes,
using 12 different frequencies from 1.3Ghz to 319Mhz. The
performance goal is to maintain the same level of perfor-
mance (execution time) offered at the highest frequency
mode (1.3Ghz). The frequency is reduced after a batch of
inputs has been processed and before the next batch starts,
and applied instantaneously.
For reliable measurements, we run 200 batches of 500

images each: we divide the 5K test set into 10 batches and
cycle through them 20 times. We average the processing time
and accuracy across batches. The experiments use Control

strategy 2 from Section 5, with a sliding window size of 1
batch execution (500 images). When frequency is reduced at
the end of batch 𝑛, we measure the imposed slowdown at
end of batch 𝑛 + 1, compute the required speedup to meet
the target execution time, and ApproxTuner picks a new
configuration for batch 𝑛 + 2. The configuration switching
overhead is negligible (Section 5).

7 Evaluation
We experimentally evaluate the benefits of ApproxTuner.
We analyze the three stages in Sections 7.1-7.3 (development-
time), Section 7.4 (install-time), and Section 7.5 (runtime).
We characterize tuned approximations in Section 7.2. We
evaluate predictive tuning in Section 7.3. We demonstrate
tuning a composite CNN + image processing benchmark
with multiple QoS metrics in Section 7.6.
7.1 Performance and Energy Improvements
Improvements for GPU. Figures 2a and 2b show the per-
formance and energy benefits achieved on the Tegra’s GPU,
for accuracy reductions of 1%, 2% and 3%. The X-axes list the
benchmarks and the Y-axes show improvements over the
FP32 baseline. These results only use hardware-independent
approximations: FP16, perforation, sampling. The results are
reported after trying both predictors, Π1 and Π2, and choos-
ing the best result (we compare the predictors in Section 7.3).

For Δ𝑄𝑜𝑆1%, Δ𝑄𝑜𝑆2%, and Δ𝑄𝑜𝑆3%, the geomean speedups
are 2.14x, 2.23x, and 2.28x. The maximum speedup achieved
is 2.75x for VGG-16-ImageNet at Δ𝑄𝑜𝑆3%. On average, FP16
alone provides 1.63x speedup, and moreover, has little ef-
fect on accuracy. Sampling and perforation together give an
additional 1.4x geomean speedup, on top of FP16.

Figures 2a and 2b show that increasing loss threshold from
1% to 2% to 3% provides higher improvements in six out of
ten benchmarks, since it allows the tuner to gradually use
more aggressive approximations. Four networks (VGG16-
100, ResNet50, MobileNet, LeNet), do not show any improve-
ment, because more aggressive sampling and perforation of
most layers immediately degrades quality by over 3%.

Energy reductions (Fig. 2b) are positively correlated with
speedups, as expected. For Δ𝑄𝑜𝑆1%, Δ𝑄𝑜𝑆2%, and Δ𝑄𝑜𝑆3%,
the mean energy reductions are 1.99x, 2.06x and 2.11x.
Improvements for CPU. The mean speedups for the CPU
for Δ𝑄𝑜𝑆1%, Δ𝑄𝑜𝑆2% and Δ𝑄𝑜𝑆3% are 1.31x, 1.38x and 1.42x
(figure omitted for space). The maximum speedup is 1.89x for
VGG16-CIFAR10. The energy benefits are quite similar. The
benefits on the CPU are significantly lower than on the GPU
(though still valuable) since the ARM CPUs on the Jetson
TX2 board do not support FP16, and so the performance and
energy benefits are due only to sampling and perforation.
This particularly affects MobileNet and ResNet-50, which
are less amenable to sampling or perforation.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

2.14
2.23
2.28

Sp
ee

du
p

1.00

1.50

2.00

2.50

3.00

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

∆QoS 1% ∆QoS 2% ∆QoS 3%

(a)

1.99
2.06
2.11

En
er

gy
 R

ed
uc

tio
n

1.00

1.50

2.00

2.50

3.00

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

∆QoS 1% ∆QoS 2% ∆QoS 3%

(b)

Fig. 2. (a) Speedups and (b) Energy reductions achieved on GPU using hardware-
independent approximations for Δ𝑄𝑜𝑆1%, Δ𝑄𝑜𝑆2%, Δ𝑄𝑜𝑆3%.

2.27

1.97

2.25

Sp
ee
du

p

1.00

1.50

2.00

2.50

3.00

Al
ex
ne
t

Al
ex
ne
t_i
ma
ge
ne
t

Al
ex
ne
t2

Re
sn
et1
8

Re
sn
et5
0

Vg
g1
6_
10

Vg
g1
6_
10
0

Vg
g1
6_
im
ag
en
et

Mo
bil
en
et

Le
ne
t

Ge
o-m

ea
n

Predictive-Π1 Predictive-Π2 Empirical

Fig. 3. Comparing predictive vs. empirical
tuning for Δ𝑄𝑜𝑆3%.

7.2 Characteristics of Approximated Benchmarks
Table 3 shows the best performing GPU configurations (num-
ber of operationsmapped to approximation knobs) forΔ𝑄𝑜𝑆3%.
Table 3. Approximation knobs for top performing GPU configu-

ration (maximum speedup) for Δ𝑄𝑜𝑆3%.
Benchmark Occurrences of Approximation Knobs
LeNet-5 samp-50%:1 perf-50%:1 FP16:2
AlexNet-CIFAR10 FP16:2 samp-50%:3 samp-25%:1
AlexNet2 FP16:3 perf-50%:1 samp-50%:2 perf-33%:1
VGG-16-10 FP16:4 perf-50%:3 perf-33%:2 samp-50%:6
VGG-16-100 FP16:4 perf-50%:2 samp-50%:8 perf-33%:1
ResNet-18 FP16:13 perf-50%:6 perf-33%:2 samp-25%:1
MobileNet FP16:20 perf-50%:3 perf-33%:3 perf-25%:2
AlexNet-ImageNet FP16:2 perf-50%:1 perf-25%:3
VGG-16-ImageNet FP16:8 perf-50%:1 samp-50%:7
ResNet50-ImageNet FP16:42 perf-50%:2 perf-33%:3 perf-25%:6

General Trends. We find that the first few layers in the
CNNs are relatively less amenable to approximations. For
4 benchmarks, the first layer is not mapped to perforation
or sampling (only FP16). For ResNet-18 and MobileNet, the
first 3 layers are not mapped to perforation or sampling.
We summarize interesting insights for several represen-

tative CNNs. The other CNNs show similar behaviors (e.g.,
AlexNet2-CIFAR10 behaves similarly to AlexNet-CIFAR10).
AlexNet-CIFAR10: None of the layers in AlexNet map to
the perforated convolutions approximation, while all layers
(in most configurations) are amenable to filter sampling.
ResNet18: Across all configurations in the Pareto set, 7 of
the 21 convolution layers are not mapped to any approxi-
mation. Interestingly, 4 layers map only to 33% perforation
and all use different start offsets, showing the importance of
combining varying start offsets.
VGG16-100: We find that 3 layers in VGG16-100 can only
be mapped to column-based perforation while row-based
perforation leads to low accuracy.

12.6 15.9
10.8

10.5

4.7

12.6 9.8 8.6

3.3

12.8 16.7
12.2

10.6

4.8

En
er

gy
 R

ed
uc

tio
n

1

2

3

4

5

6

Alex
net

Alex
net_

im
ag

en
et

Alex
net2

Res
net1

8

Res
net5

0

Vgg16
_1

0

Vgg16
_1

00

Vgg16
_im

ag
en

et

Mobile
net

Len
et

Geo
-m

ea
n

Predictive-Π1 Predictive-Π2 Empirical

Fig. 4. Energy reductions on GPU + PROMISE with install-
time distributed predictive tuning (Π1, Π2) and empirical tuning
for Δ𝑄𝑜𝑆3%.

MobileNet: For the best configuration, only 8 layers out
of 28 could be mapped to approximations without signifi-
cant accuracy loss, which is why MobileNet has the lowest
performance improvement (1.50× speedup).
ResNet50-ImageNet: At most 11 convolutions (from 53)
are mapped to any approximation other than FP16, with
6 convolution operators mapped to 25% perforation. As a
result, ResNet50-ImageNet achieves much of its speedup
from FP16, although the overall speedup of 1.95× is quite
significant for just 1% accuracy reduction.

Overall, these insights show the importance of combining dif-
ferent approximations and the importance of tuning the choices
of combinations to balance accuracy vs. performance gains.
7.3 Predictive vs Empirical Tuning
Comparing Speedups.We compare our predictive approx-
imation tuning with empirical tuning, both using Open-
Tuner [5]. Figure 3 illustrates results for the maximum bound
of 3%. It shows that predictors Π1 and Π2 provide geomean
speedups of 2.27x and 1.97x, compared with 2.25x for empir-
ical tuning. For most benchmarks, Π1 effectiveness is sim-
ilar to empirical tuning, but Π2 provides lower speedups
because it systematically underestimates accuracy loss for

ApproxTuner PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Fig. 5. GPU, DDR, and overall system power at different GPU
frequency levels for ResNet18. As GPU frequency reduces, GPU
and overall power consumption reduce.

Table 4. Predictive Tuning times compared to Empirical
(in minutes). “Π1-red” and “Π2-red” are speedups compared to
Empirical.

Benchmark Empirical Pred-Π1 Pred-Π2 Π1-red Π2-red
LeNet 11.4 1.0 1.1 11.21x 10.61x

AlexNet-CIFAR10 418.7 9.9 11.7 42.27x 35.80x
AlexNet2 133.9 11.1 12.4 12.09x 10.78x
VGG-16-10 1015.3 36.2 25.8 28.06x 39.35x
VGG-16-100 494.6 30.8 25.2 16.03x 19.64x
ResNet18 373.1 27.3 30.5 13.68x 12.25x
MobileNet 772.7 58.7 38.4 13.17x 20.10x

AlexNet-ImageNet 661.1 240.1 25.5 2.75x 25.93x
VGG-16-ImageNet 1937.1 334.9 143.5 5.78x 13.50x
ResNet50-ImageNet 11112.8 716.4 246.3 15.51x 45.12x

Geomean 12.76x 20.37x

some benchmarks, and therefore chooses configurations that
are later removed during accuracy validation.
Autotuning Times. Table 4 shows the autotuning time for
predictive tuning compared to empirical tuning using Open-
Tuner. Predictive-Π1 and Predictive-Π2 are on average 12.76x
and 20.37x faster than empirical tuning. Π1 calculations are
significantly slower than Π2’s on large tensors, e.g., 3.8x and
6.7x slower on VGG16-ImageNet and AlexNet-ImageNet,
respectively. This shows the importance of having both pre-
dictors: for large models and data sets, Π2 is more likely to be
feasible and gives good speedups with reasonably good ac-
curacy, while Π1 is more precise but requires more memory.
Size of Tradeoff Curves. For our benchmarks, autotuning
(before configuration selection) on average generates 4360
configurations. As ApproxTuner keeps at most 50 configura-
tions (§ 6.4), the size of the tradeoff curve is reduced by 87x.
7.4 Install-time tuning
We evaluate the efficacy of our install-time tuning strategy in
exploiting the low voltage knobs in the PROMISE accelerator
that trade accuracy for energy savings (Section 2.3).
Energy Savings. Figure 4 shows the energy reductions achieved
with install-time predictive distributed tuning compared to
empirical tuning for Δ𝑄𝑜𝑆3%. The energy reductions are
achieved by mapping tensor operations to the PROMISE ac-
celerator and lowering the analog read swing voltages to fur-
ther lower energy use at the cost of increased error. With the
exception of ResNet50, all benchmarks have some tensor op-
erations mapped to PROMISE. For LeNet, AlexNet, AlexNet2,
and VGG16-CIFAR10 more than 50% of convolution opera-
tions can be mapped to PROMISE (for Δ𝑄𝑜𝑆3%). On average,

predictors Π1 and Π2 provide 4.7x and 3.3x energy reduc-
tions, compared to 4.8x reduction for empirical tuning. Π2
is lower than Π1 due to higher prediction error, which leads
the search to explore less effective configurations. These
results show that the predictive install-time tuning in Ap-
proxTuner can exploit hardware-specific approximations by
intelligently selecting operations to offload to accelerators,
and achieves significant energy improvements.
Tuning Times. We separately measure the times on the
edge device for error profile collection and the autotuning
time on the server. A single distributed error profile collec-
tion phase on the edge device ranges from 1 minute (LeNet)
to 6 hours (ResNet50), with a geometric mean of 25 min-
utes across all benchmarks. To put these results into context,
with a back-of-the-envelope calculation, we estimate that
empirical tuning for ResNet50 on a single Tegra Tx2 would
take more than 4 months. The autotuning time on the server
ranges from 24 minutes (LeNet) to 10.22 hours (ResNet-50),
with a geometric mean of 1.9 hours across benchmarks.
7.5 Runtime Approximation Tuning
We vary GPU frequency to mimic lower power modes. As
Figure 5 shows, both the GPU power and total system (SYS)
power decrease substantially with decreasing frequency, by
~7̇x for the GPU and ~1̇.9x for the system when frequency
decreases from 1300MHz to 318MHz. DDR power decreases
only slightly because DDR frequency is kept constant. These
results are averaged over 10 runs of ResNet18-CIFAR10.

We show the effectiveness of run-time adaptation for three
evaluated CNNs in Figure 6 (other CNNs exhibit similar be-
havior). The X-axis presents the different frequencies, which
we vary over time. The left Y-axis shows the normalized
execution time (averaged over 200 batches), relative to time
taken at the highest frequency level (1.3Ghz). The right Y-
axis presents the model accuracy (in %).
As we reduce the frequency, the baseline configuration

slows down substantially (solid blue line), while accuracy
remains unaffected. ApproxTuner’s dynamic tuning coun-
teracts the slowdown and maintains the original average
batch processing time through most of the frequency range
(dashed orange lines), while gracefully degrading the in-
ference accuracy (yellow lines, right Y-axis). To counteract
higher slowdowns, relatively higher QoS degradation has to
be imposed. For instance, for ResNet18, a potential slowdown
of 1.45x in the baseline case (at 675MHz) can be counteracted
with an accuracy drop of 0.33 percentage points, but as much
as 1.75x (at 497 MHz) can be compensated with an accuracy
drop of 1.25 points. At 497MHz, there is a 1.72x reduction in
average power consumed (Figure 5). Similarly, for AlexNet-
ImageNet and AlexNet2-CIFAR10, frequency can be reduced
up to 586MHz (with 1.7 and 1.9 points of accuracy loss), while
maintaining performance. This reduces average power con-
sumption by 1.66x and 1.62x, respectively (power-frequency
graphs are not shown for AlexNet and AlexNet2).

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

(a) (b) (c)

Fig. 6. Figures a), b) and c) show that runtime approximation tuning trades off accuracy to maintain the same level of responsiveness
when frequency levels are reduced. The times on the y-axis are normalized with respect to performance achievable at the highest frequency
(1.3Ghz). Without dynamic approximations (the blue line), applications slow down.

These results demonstrate that ApproxTuner’s dynamic
approximation-tuning capabilities can help maintain a target
performance in the face of lower power/frequency modes.
7.6 Combining CNNs and Image Processing
In our final experiment, we demonstrate that ApproxTuner
can optimize components from multiple tensor-based do-
mains, each with its own QoS metric, using a benchmark
that combines CNN and Image processing. The application
consists of a CNN (AlexNet2 on CIFAR-10) that classifies im-
ages to one of 10 classes, and images from five of the classes
are forwarded for Canny edge detection [10].

Fig. 7. Speedups achieved on GPU for a grid of accuracy
(horizontal) and PSNR (vertical) thresholds.

For this benchmark, the QoS we consider is a pair (PSNR,
accuracy), using PSNR for image quality of edge detection
and accuracy for the CNN classifier. Figure 7 presents the
best configurations achieved on the GPU with each QoS pair.
Nine QoS pairs are evaluated, with three different values
each of PSNR and accuracy. The bar labels show speedups
compared to the FP32 baseline. As either threshold (PSNR
or accuracy) is relaxed, speedup increases, since the tuner
finds more opportunities for approximation.

Predictive tuning again enables dramatically faster tuning
(graphs omitted) while preserving optimization gains. For all
(PSNR, accuracy) pairs, predictive and empirical tuning find
configurations with comparable speedups, while predictive
tuning is 20.1× faster on average. In five of the nine pairs, pre-
dictive tuning gives slightly higher speedups. Our inspection
shows that this is the effect of the non-deterministic nature
of OpenTuner (i.e., randomness in search). For this bench-
mark, we only apply model Π2 since the size of the output

tensor is not fixed (CNN classification results affect output
tensor size), and model Π1 requires each approximation knob
error profile to be equal-sized tensors (Section 8).
8 Discussion and Future Work
Scope of the Predictive Models.We have applied our pre-
dictive models to fixed DAGs of tensor operations in the con-
text of CNNs and to one image processing benchmark, but
they can be applied to other tensor domains. Our models are
better at estimating QoS when these conditions are satisfied:
1) The control flow is deterministic and input-independent.
2) The operators have no side effects. 3) For predictor Π1,
the shapes of raw tensor outputs must match, since these
outputs are summed up in the model. As part of future work,
we hope to incorporate models for other kinds of computa-
tions, beyond tensor operations. There is also potential for
evaluating and extending these models to work with input-
dependent control-flow and operations with side-effects.
Interaction with Model Compression Techniques. We
believe that the approximation-tuning capabilities in Ap-
proxTuner open avenues for new research opportunities.
We perform preliminary experiments to investigate the po-
tential for incorporating compression techniques such as
pruning [22, 41, 52] as part of our tuning framework. We
create pruned models (using the approach in [52]) for Mo-
bileNet, VGG16, and ResNet18 on CIFAR-10. We find that,
starting with the pruned models, applying perforated convo-
lutions using empirical tuning in ApproxTuner reduces MAC
(multiply-accumulate) operations by 1.3x for MobileNet and
VGG-16, and by 1.2x for ResNet18, while reducing inference
accuracy by less than 1% point compared with the pruned
model. The key takeaway is that approximation techniques
can be applied to pruned models with little loss of accuracy,
and potentially yielding valuable additional speedups. In
future work, we aim to incorporate model compression tech-
niques, including pruning, into ApproxTuner and conduct a
systematic evaluation of the accuracy-performance tradeoffs.

9 Related Work
Table 5 compares ApproxTuner to select related systems
across four broad kinds of capabilities: a) support for approx-
imations, b) programmability, c) tuning strategies, and d)

ApproxTuner PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Table 5. Comparing capabilities of ApproxTuner versus most closely related state-of-the-art systems.

Approximations Programmability Tuning Strategies Model Approxs
Algorithmic
Approxs

Accelerator
-specific
Approxs

Multi
Domain
Approx

Precision
Tuning

No
Code
Changes

Retarget Portable
Object
Code

Joint
Dev+Install
Time Tuning

Runtime
Approx
Tuning

Predictive
Tuning

Model
Approxs

Support
for Re-
training

ApproxTuner
ApproxHPVM [57]
TVM [12], AutoTVM [13]
ACCEPT [56]
PetaBricks [4]

support for DNN model optimizations (pruning, quantiza-
tion) and model retraining.
Compilers for Accuracy Tuning: ApproxHPVM [57] is
a compiler we developed for accuracy-aware mapping of
applications to heterogeneous systems. ApproxHPVM only
supports hardware approximations (FP16 and PROMISE)
and uses standard empirical autotuning at development time.
It has no install-time or run-time tuning. Its reliance on L-
norms is insufficient for algorithmic approximations with
heavy-tailed error distributions, as we discovered for both
perforated convolutions and feature sampling.

TVM [12] is a deep-learning compiler that generates opti-
mized tensor-operator code for CPUs, GPUs, and accelera-
tors. It supports reduced precision (FP16 and INT8) and DNN
binarization [19] (reducing operator precision to 1 or 2 bits),
but applies each of them for the entire network and does not
tune individual operations with different choices or knobs.
It does not support approximation tuning or arbitrary soft-
ware/hardware approximations and does not dynamically
adjust approximation knobs.
ACCEPT [56] uses programmer-specified type declara-

tions to approximate programs on CPUs or FPGAs. Unlike
ApproxTuner, it requires extensive source annotations, does
not support tuning strategies for combinations of approxi-
mations, and does not support run-time adaptation.

Petabricks uses heuristic search to select among multiple
user-provided versions of an algorithm with varying accu-
racy [4, 6, 16]. It requires developers to rewrite programs in
the Petabricks programming language to provide alternate
algorithm implementations, does not offer built-in, generic
approximation options such as reduced precision, and does
not support run-time approximation choices.
Dynamic Approximation Tuning: Many systems have
supported approximation changes at run-time on CPU [9, 26,
27] and GPU [23, 54, 55]. These systems 1) do not target het-
erogeneous systems beyond GPUs, and 2) do not support effi-
cient tuning for combiningmultiple kinds of approximations.
Model Optimizations for DNNs. Deep Compression [21]
uses pruning, quantization, and compression to reducemodel
size (as much as 49x for VGG-16). However, pruning intro-
duces sparsity in the computation which limits performance
gains, and can even lead to slowdowns on GPUs [44, 61, 65].
To make sparse tensor computation efficient, researchers
proposed software and architectural techniques [20, 25, 38,
44, 51, 64]. ApproxTuner does not reduce model size, but

optimizes various tensor operator approximations, yield-
ing significant speedups. Our preliminary study (Section 8)
shows that there is potential for combining perforation and
sampling with pruned models to have both model size and
performance improvements. Our work is also complemen-
tary to systems that automatically generate implementations
for low-precision quantized tensor computations [15, 19].
10 Conclusion
We proposed ApproxTuner, a compiler and runtime system
that uses a 3-phase tuning approach including development-
time, install-time, and runtime tuning. ApproxTuner uses
performance and accuracy prediction heuristics to tune the
program at development-time and generates a tradeoff curve,
it refines this tradeoff curve with performance measure-
ments and hardware-specific approximations at install-time,
and uses this tradeoff curve at runtime to switch configura-
tions efficiently in response to changing runtime conditions.
Across 11 benchmarks, ApproxTuner delivers a geometric
mean performance improvement of 2.1x on the GPU, and 1.3x
on the CPU, with only 1 percentage point drop in accuracy.
Dynamic tuning capabilities allow ApproxTuner to adapt
application performance to changing run-time conditions.
Overall, ApproxTuner provides a generic approximation-
tuning framework that is extensible to a wide range of soft-
ware and hardware approximations, for important applica-
tion domains such as neural networks and image processing.
Our future work includes extending ApproxTuner to other
domains and applying it with an even broader of algorithmic
optimizations.
Acknowledgements
Thiswork is supported in part byDARPA through theDomain-
Specific System on Chip (DSSoC) program, the National
Science Foundation under Grants CCF 17-03637, CCF 18-
46354, and CCF 19-56374, a Google Faculty Research award,
a grant from the Amazon AWS Machine Learning Research
Awards Program, and by the Applications Driving Architec-
tures (ADA) Research Center, a JUMP Center co-sponsored
by SRC and DARPA.
References
[1] 2020. Coral. https://coral.ai/.
[2] 2020. Qualcomm Redefines Premium with the Flagship Snapdragon

888 5G Mobile Platform. https://www.qualcomm.com/news/releases/
2020/12/02/qualcomm-redefines-premium-flagship-snapdragon-
888-5g-mobile-platform.

https://coral.ai/
https://www.qualcomm.com/news/releases/2020/12/02/qualcomm-redefines-premium-flagship-snapdragon-888-5g-mobile-platform
https://www.qualcomm.com/news/releases/2020/12/02/qualcomm-redefines-premium-flagship-snapdragon-888-5g-mobile-platform
https://www.qualcomm.com/news/releases/2020/12/02/qualcomm-redefines-premium-flagship-snapdragon-888-5g-mobile-platform

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). 265–283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[4] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: a language
and compiler for algorithmic choice. Vol. 44. ACM. https://doi.org/10.
1145/1543135.1542481

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
2014. OpenTuner: An Extensible Framework for Program Autotuning.
In Proceedings of the 23rd international conference on Parallel architec-
tures and compilation. ACM, 303–316. https://doi.org/10.1145/2628071.
2628092

[6] Jason Ansel, Yee LokWong, Cy Chan, Marek Olszewski, Alan Edelman,
and Saman Amarasinghe. 2011. Language and compiler support for
auto-tuning variable-accuracy algorithms. In Code Generation and Op-
timization (CGO), 2011 9th Annual IEEE/ACM International Symposium
on. IEEE, 85–96. https://doi.org/10.1109/CGO.2011.5764677

[7] ARM. 2019. Half-precision floating-point number format.
https://developer.arm.com/docs/dui0774/e/other-compiler-specific-
features/half-precision-floating-point-number-format. Accessed:
2019-11-21.

[8] D. Azariadi, V. Tsoutsouras, S. Xydis, and D. Soudris. 2016. ECG signal
analysis and arrhythmia detection on IoT wearable medical devices.
In 2016 5th International Conference on Modern Circuits and Systems
Technologies (MOCAST). 1–4. https://doi.org/10.1109/MOCAST.2016.
7495143

[9] Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Frame-
work for Supporting Energy-conscious Programming Using Con-
trolled Approximation. SIGPLAN Not. 45, 6 (June 2010), 198–209.
https://doi.org/10.1145/1809028.1806620

[10] John Canny. 1986. A computational approach to edge detection. IEEE
Transactions on pattern analysis and machine intelligence 6 (1986), 679–
698.

[11] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, Olivier Temam, Tianshi Chen, Zidong Du, Ninghui Sun,
Jia Wang, Chengyong Wu, Yunji Chen, Olivier Temam, Tianshi Chen,
Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and
Olivier Temam. 2014. DianNao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning. ACM SIGPLAN Notices
49, 4 (2014), 269–284. https://doi.org/10.1145/2644865.2541967

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. 2018. TVM: An automated end-to-end optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 578–594. https://www.usenix.
org/system/files/osdi18-chen.pdf

[13] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, ThierryMoreau,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learn-
ing to optimize tensor programs. In Advances in Neural Information
Processing Systems. 3389–3400.

[14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:
Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014).
arXiv:1410.0759 http://arxiv.org/abs/1410.0759

[15] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and
Luis Ceze. 2020. Automatic generation of high-performance quantized
machine learning kernels. In Proceedings of the 18th ACM/IEEE Inter-
national Symposium on Code Generation and Optimization. 305–316.

[16] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-
May O’Reilly, and Saman Amarasinghe. 2015. Autotuning Algorith-
mic Choice for Input Sensitivity. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’15). ACM, New York, NY, USA, 379–390. https:
//doi.org/10.1145/2737924.2737969

[17] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet
Kohli. 2016. PerforatedCNNs: Acceleration through Elimination of
Redundant Convolutions. In Advances in Neural Information Processing
Systems. 947–955.

[18] Carlos M Fonseca, Joshua D Knowles, Lothar Thiele, and Eckart Zitzler.
2005. A tutorial on the performance assessment of stochastic multiob-
jective optimizers. In Third International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2005), Vol. 216. 240.

[19] Josh Fromm, Meghan Cowan, Matthai Philipose, Luis Ceze, and Shwe-
tak Patel. 2020. RIPTIDE: Fast End-to-end Binarized Neural Net-
works. Proceedings of Machine Learning and Systems (MLSys) (2020).
http://ubicomplab.cs.washington.edu/pdfs/riptide.pdf

[20] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse
GPUKernels for Deep Learning. arXiv preprint arXiv:2006.10901 (2020).

[21] Song Han, Huizi Mao, and William J. Dally. 2015. Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quantiza-
tion and Huffman Coding. arXiv:cs.CV/1510.00149

[22] Song Han, Jeff Pool, John Tran, andWilliam Dally. 2015. Learning both
weights and connections for efficient neural network. In Advances in
neural information processing systems. 1135–1143.

[23] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agar-
wal, Alec Wolman, and Arvind Krishnamurthy. 2016. MCDNN: An
Approximation-based Execution Framework for Deep Stream Process-
ing Under Resource Constraints. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services.
ACM, 123–136. https://doi.org/10.1145/2906388.2906396

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[25] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal
Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W
Fletcher. 2019. ExTensor: An Accelerator for Sparse Tensor Algebra. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture. 319–333. https://doi.org/10.1145/3352460.3358275

[26] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal,
and Martin Rinard. 2009. Using code perforation to improve perfor-
mance, reduce energy consumption, and respond to failures. (2009).

[27] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard. 2011. Dynamic Knobs for Responsive Power-Aware
Computing (ASPLOS). https://doi.org/10.1145/1961295.1950390

[28] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

[29] Intel. 2018. Intel Movidius Vision Processing Units (VPUs).
https://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/myriad-x-product-brief.pdf.

[30] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson,
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan
Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao,
Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gul-
land, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/1543135.1542481
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1109/CGO.2011.5764677
https://developer.arm.com/docs/dui0774/e/other-compiler-specific-features/half-precision-floating-point-number-format
https://developer.arm.com/docs/dui0774/e/other-compiler-specific-features/half-precision-floating-point-number-format
https://doi.org/10.1109/MOCAST.2016.7495143
https://doi.org/10.1109/MOCAST.2016.7495143
https://doi.org/10.1145/1809028.1806620
https://doi.org/10.1145/2644865.2541967
https://www.usenix.org/system/files/osdi18-chen.pdf
https://www.usenix.org/system/files/osdi18-chen.pdf
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.1145/2737924.2737969
https://doi.org/10.1145/2737924.2737969
http://ubicomplab.cs.washington.edu/pdfs/riptide.pdf
https://arxiv.org/abs/cs.CV/1510.00149
https://doi.org/10.1145/2906388.2906396
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/1961295.1950390
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/myriad-x-product-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/myriad-x-product-brief.pdf

ApproxTuner PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017. ACM,
1–12. https://doi.org/10.1145/3079856.3080246

[31] Boris N Khoromskij. 2012. Tensors-structured numerical methods in
scientific computing: Survey on recent advances. Chemometrics and
Intelligent Laboratory Systems 110, 1 (2012), 1–19.

[32] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. 2017. The Tensor Algebra Compiler. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 1–29. https:
//doi.org/10.1145/3133901

[33] Joseph C Kolecki. 2002. An introduction to tensors for students of
physics and engineering. (2002).

[34] Patrick Konsor. 2011. Performance Benefits of Half Preci-
sion Floats. https://software.intel.com/en-us/articles/performance-
benefits-of-half-precision-floats. Accessed: 2019-11-21.

[35] Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sinclair, Rakesh Ko-
muravelli, VikramAdve, and Sarita Adve. 2018. HPVM: Heterogeneous
Parallel Virtual Machine. In Proceedings of the 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP ’18).
ACM, New York, NY, USA, 68–80. https://doi.org/10.1145/3178487.
3178493

[36] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from
Tiny Images. University of Toronto (05 2012).

[37] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet
Classification with Deep Convolutional Neural Networks. In Advances
in neural information processing systems. 1097–1105. https://doi.org/
10.1145/3065386

[38] Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-
wise brain damage. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2554–2564.

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based Learning Applied to Document Recognition. Proc.
IEEE 86, 11 (1998), 2278–2324.

[40] Yann LeCun, Corinna Cortes, and Christopher JC Burges.
1998. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist.

[41] Yann LeCun, John S Denker, and Sara A Solla. 1990. Optimal brain
damage. InAdvances in neural information processing systems. 598–605.

[42] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. 2016. Pruning Filters for Efficient Convnets. arXiv preprint
arXiv:1608.08710 (2016).

[43] H. Li, K. Ota, and M. Dong. 2018. Learning IoT in Edge: Deep Learning
for the Internet of Things with Edge Computing. IEEE Network 32, 1
(Jan 2018), 96–101. https://doi.org/10.1109/MNET.2018.1700202

[44] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Mari-
anna Pensky. 2015. Sparse convolutional neural networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
806–814.

[45] Mark Harris, NVIDIA. 2016. Mixed-Precision Programming with
CUDA 8. https://devblogs.nvidia.com/mixed-precision-programming-
cuda-8/.

[46] M. Mehrabani, S. Bangalore, and B. Stern. 2015. Personalized speech
recognition for Internet of Things. In 2015 IEEE 2nd World Forum on
Internet of Things (WF-IoT). 369–374. https://doi.org/10.1109/WF-
IoT.2015.7389082

[47] Andres Milioto, Philipp Lottes, and Cyrill Stachniss. 2018. Real-time se-
mantic segmentation of crop and weed for precision agriculture robots

leveraging background knowledge in CNNs. In 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2229–2235.

[48] NVIDIA. 2018. NVDLA. http://nvdla.org/.
[49] NVIDIA. 2018. NVIDIA Jetson TX2 Developer Kit. https:

//www.nvidia.com/en-us/autonomous-machines/embedded-
systems-dev-kits-modules.

[50] NVIDIA Developer Forums . 2018. Power Monitoring on Jetson
TX2. (2018)). https://forums.developer.nvidia.com/t/jetson-tx2-ina226-
power-monitor-with-i2c-interface/48754.

[51] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-
nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. 2018. OuterSPACE: An Outer
Product Based Sparse Matrix Multiplication Accelerator. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 724–736. https://doi.org/10.1109/HPCA.2018.00067

[52] Alex Renda, Jonathan Frankle, and Michael Carbin. 2019. Comparing
Rewinding and Fine-tuning in Neural Network Pruning. In Interna-
tional Conference on Learning Representations.

[53] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet
Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/
s11263-015-0816-y

[54] M. Samadi, D. Jamshidi, J. Lee, and S. Mahlke. 2014. Paraprox: Pattern-
based approximation for data parallel applications (ASPLOS). https:
//doi.org/10.1145/2541940.2541948

[55] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hor-
mati, and Scott Mahlke. 2013. SAGE: Self-tuning Approximation
for Graphics Engines. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-46). 13–24.
https://doi.org/10.1145/2540708.2540711

[56] Adrian Sampson, Andre Baixo, Benjamin Ransford, Thierry Moreau,
Joshua Yip, Luis Ceze, and Mark Oskin. 2015. ACCEPT: A Programmer-
Guided Compiler Framework for Practical Approximate Computing.
In U. Washington, Tech. Rep. UW-CSE- 15-01-01.

[57] Hashim Sharif, Prakalp Srivastava, Muhammad Huzaifa, Maria Kot-
sifakou, Keyur Joshi, Yasmin Sarita, Nathan Zhao, Vikram S. Adve,
Sasa Misailovic, and Sarita V. Adve. 2019. ApproxHPVM: a portable
compiler IR for accuracy-aware optimizations. PACMPL 3, OOPSLA
(2019), 186:1–186:30. https://doi.org/10.1145/3360612

[58] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolu-
tional Networks for Large-scale Image Recognition. arXiv preprint
arXiv:1409.1556 (2014).

[59] Prakalp Srivastava, Mingu Kang, Sujan K Gonugondla, Sungmin
Lim, Jungwook Choi, Vikram Adve, Nam Sung Kim, and Naresh
Shanbhag. 2018. PROMISE: An End-to-End Design of a Programmable
Mixed-Signal Accelerator for Machine-Learning Algorithms. In 2018
ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE. https://doi.org/10.1109/ISCA.2018.00015

[60] Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova,
Lara Dolecek, Andreas Gerstlauer, Ghayoor Gillani, Djordje Jevdjic,
Thierry Moreau, Mattia Cacciotti, Alexandros Daglis, Natalie D. En-
right Jerger, Babak Falsafi, Sasa Misailovic, Adrian Sampson, and
Damien Zufferey. 2018. Exploiting Errors for Efficiency: A Survey from
Circuits to Algorithms. CoRR abs/1809.05859 (2018). arXiv:1809.05859
http://arxiv.org/abs/1809.05859

[61] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016.
Learning structured sparsity in deep neural networks. In Advances in
neural information processing systems. 2074–2082.

[62] Chris Wiltz. 2018. Magic Leap One Teardown: A Leap For-
ward for AR/VR? (2018). https://www.designnews.com/design-
hardware-software/magic-leap-one-teardown-leap-forward-
arvr/204060129459400

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats
https://software.intel.com/en-us/articles/performance-benefits-of-half-precision-floats
https://doi.org/10.1145/3178487.3178493
https://doi.org/10.1145/3178487.3178493
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/MNET.2018.1700202
https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/
https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/
https://doi.org/10.1109/WF-IoT.2015.7389082
https://doi.org/10.1109/WF-IoT.2015.7389082
http://nvdla.org/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules
https://forums.developer.nvidia.com/t/jetson-tx2-ina226-power-monitor-with-i2c-interface/48754
https://forums.developer.nvidia.com/t/jetson-tx2-ina226-power-monitor-with-i2c-interface/48754
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/2541940.2541948
https://doi.org/10.1145/2541940.2541948
https://doi.org/10.1145/2540708.2540711
https://doi.org/10.1145/3360612
https://doi.org/10.1109/ISCA.2018.00015
https://arxiv.org/abs/1809.05859
http://arxiv.org/abs/1809.05859
https://www.designnews.com/design-hardware-software/magic-leap-one-teardown-leap-forward-arvr/204060129459400
https://www.designnews.com/design-hardware-software/magic-leap-one-teardown-leap-forward-arvr/204060129459400
https://www.designnews.com/design-hardware-software/magic-leap-one-teardown-leap-forward-arvr/204060129459400

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea H. Sharif et al.

[63] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-
hury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia,
Bill Jia, et al. 2019. Machine learning at Facebook: Understand-
ing Inference at the Edge. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 331–344.
https://doi.org/10.1109/HPCA.2019.00048

[64] Leonid Yavits, Amir Morad, and Ran Ginosar. 2014. Sparse matrix mul-
tiplication on an associative processor. IEEE Transactions on Parallel
and Distributed Systems 26, 11 (2014), 3175–3183.

[65] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetu-
parna Das, and Scott Mahlke. 2017. Scalpel: Customizing DNN pruning

to the Underlying Hardware Parallelism. ACM SIGARCH Computer Ar-
chitecture News 45, 2 (2017), 548–560. https://doi.org/10.1145/3140659.
3080215

[66] Wanghong Yuan, Klara Nahrstedt, Sarita Adve, Douglas L Jones, and
Robin H Kravets. 2003. Design and evaluation of a cross-layer adapta-
tion framework for mobile multimedia systems. In Multimedia Com-
puting and Networking 2003, Vol. 5019. International Society for Optics
and Photonics, 1–13. https://doi.org/10.1117/12.484069

[67] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A Kelner, and Martin
Rinard. 2012. Randomized accuracy-aware program transformations
for efficient approximate computations. In ACM SIGPLAN Notices,
Vol. 47. ACM, 441–454. https://doi.org/10.1145/2103621.2103710

https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1145/3140659.3080215
https://doi.org/10.1145/3140659.3080215
https://doi.org/10.1117/12.484069
https://doi.org/10.1145/2103621.2103710

	Abstract
	1 Introduction
	1.1 ApproxTuner System
	1.2 Contributions

	2 ApproxTuner Overview
	2.1 Preliminaries and Terminology
	2.2 Overview of Three Stages of ApproxTuner
	2.3 Approximation Methods

	3 Development-time Tuning
	3.1 Overview of Predictive Tuning
	3.2 Gathering QoS Profiles
	3.3 Models for QoS Prediction
	3.4 Models for Performance Prediction
	3.5 Constructing Tradeoff Curve

	4 Install-time Tuning
	5 Runtime Approximation Tuning
	6 Evaluation Methodology
	6.1 Quality Metrics
	6.2 Implementation
	6.3 Hardware Setup
	6.4 Autotuning Setup

	7 Evaluation
	7.1 Performance and Energy Improvements
	7.2 Characteristics of Approximated Benchmarks
	7.3 Predictive vs Empirical Tuning
	7.4 Install-time tuning
	7.5 Runtime Approximation Tuning
	7.6 Combining CNNs and Image Processing

	8 Discussion and Future Work
	9 Related Work
	10 Conclusion
	References

