
186

ApproxHPVM: A Portable Compiler IR for Accuracy-Aware
Optimizations

HASHIM SHARIF, University of Illinois at Urbana-Champaign, USA
PRAKALP SRIVASTAVA, University of Illinois at Urbana-Champaign, USA
MUHAMMAD HUZAIFA, University of Illinois at Urbana-Champaign, USA
MARIA KOTSIFAKOU, University of Illinois at Urbana-Champaign, USA
KEYUR JOSHI, University of Illinois at Urbana-Champaign, USA
YASMIN SARITA, Cornell University, USA
NATHAN ZHAO, University of Illinois at Urbana-Champaign, USA
VIKRAM S. ADVE, University of Illinois at Urbana-Champaign, USA
SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA
SARITA ADVE, University of Illinois at Urbana-Champaign, USA

ABSTRACT
We propose ApproxHPVM, a compiler IR and system designed to enable accuracy-aware performance and
energy tuning on heterogeneous systems with multiple compute units and approximation methods. ApproxH-
PVM automatically translates end-to-end application-level quality metrics into accuracy requirements for
individual operations. ApproxHPVM uses a hardware-agnostic accuracy-tuning phase to do this translation
that provides greater portability across heterogeneous hardware platforms and enables future capabilities like
accuracy-aware dynamic scheduling and design space exploration.

ApproxHPVM incorporates three main components: (a) a compiler IR with hardware-agnostic approxi-
mation metrics, (b) a hardware-agnostic accuracy-tuning phase to identify error-tolerant computations, and
(c) an accuracy-aware hardware scheduler that maps error-tolerant computations to approximate hardware
components. As ApproxHPVM does not incorporate any hardware-specific knowledge as part of the IR, it can
serve as a portable virtual ISA that can be shipped to all kinds of hardware platforms.

We evaluate our framework on nine benchmarks from the deep learning domain and five image processing
benchmarks. Our results show that our framework can offload chunks of approximable computations to
special-purpose accelerators that provide significant gains in performance and energy, while staying within
user-specified application-level quality metrics with high probability. Across the 14 benchmarks, we observe
from 1-9x performance speedups and 1.1-11.3x energy reduction for very small reductions in accuracy.

CCS Concepts: • Software and its engineering→ Compilers.

Additional Key Words and Phrases: Compiler, Virtual ISA, Approximate Computing, Heterogeneous Systems,
Deep Neural Networks

ACM Reference Format:
Hashim Sharif, Prakalp Srivastava, Muhammad Huzaifa, Maria Kotsifakou, Keyur Joshi, Yasmin Sarita, Nathan
Zhao, Vikram S. Adve, Sasa Misailovic, and Sarita Adve. 2019. ApproxHPVM: A Portable Compiler IR for
Accuracy-Aware Optimizations. Proc. ACM Program. Lang. 3, OOPSLA, Article 186 (October 2019), 30 pages.
https://doi.org/10.1145/3360612

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART186
https://doi.org/10.1145/3360612

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.

https://doi.org/10.1145/3360612
https://doi.org/10.1145/3360612


186:2 Hashim Sharif et al.

1 INTRODUCTION

With the slowdown ofMoore’s Law and the end of Denard scaling, the gap between hardware perfor-
mance and the ever-increasing requirements of modern applications continues to widen [St. Amant
et al. 2014]. Recent paradigms such as approximate computing attempt to bridge the gap by intro-
ducing novel hardware architectures and software optimizations that trade-off accuracy for gains
in performance and energy [Stanley-Marbell et al. 2018]. Approximate computing is particularly
relevant for application domains that can tolerate small errors with acceptable loss in the final
output, such as signal processing, speech recognition, sensor networks, information retrieval, data
mining, video decoding, game engines, and machine learning.

Approximate computing techniques can be realized in many architectural components: floating-
point units, caches, DRAM, and analog and digital accelerators [Esmaeilzadeh et al. 2012; Srivastava
et al. 2018; St. Amant et al. 2014]. Software techniques are similarly diverse, such as loop perfora-
tion [Sidiroglou-Douskos et al. 2011], barrier elision [Misailovic et al. 2012], reduction sampling,
and function substitution [Zhu et al. 2012]. A given computational algorithm or kernel may ben-
efit from multiple different approximation techniques, and moreover, a realistic application will
contain several (or many) distinct kernels. Determining how best to map such an application to
a modern heterogeneous system while achieving the best overall tradeoff between end-to-end
application-level accuracy and performance or energy is an open research problem. Moreover,
application developers and end users cannot be expected to specify error tolerances in terms of
the system-level parameters required by the various approximation techniques, or even know
about many of them: we need automated mapping strategies that can translate application-level
specifications (e.g., tolerable classification error in a machine learning application) to system-level
parameters (e.g., neural network parameter precision or circuit-level voltage swings).
In addition, software portability is a critical requirement for modern applications, not just at

the source-code level but also the ability to ship software that can execute efficiently on a wide
range of systems. Modern applications for both desktop and mobile (e.g., smartphone or tablet)
systems are almost always shipped by application teams to end-users in a form that can execute
on multiple system configurations (e.g., with different vector ISAs or GPUs) and even multiple
hardware generations (e.g., across x86 processors). GPUs, for example, provide virtual instructions
sets, e.g., PTX [NVIDIA 2010] or HSAIL [Sander 2013], to enable software to be shipped as “virtual
object code” that is translated to particular hardware instances only on the end-user’s system. This
is a major challenge for approximate computing approaches because hardware-specific accuracy-
performance-energy choices can make orders-of-magnitude difference in the performance and
energy benefits achieved in exchange for relaxing accuracy. A critical goal for real-world use of
such approaches is to enable software to be shipped as portable virtual object code, while deferring
the hardware-specific aspects of accuracy-performance-energy optimizations to be performed after
shipping [Ansel et al. 2011] (e.g., on the end-user’s device or on servers in an app store).

Existing systems for accuracy-aware optimizations do not provide a fully automated framework
that is able to target multiple heterogeneous devices with diverse approximation choices without
requiring programmer-guided low-level annotations. We propose ApproxHPVM, a unified com-
piler IR and framework that solves both the problems above – ease of programming and object-code
portability – and does in a fully automatic manner:

• Programmers only have to specify application-level, end-to-end error tolerance constraints, and
ApproxHPVMcan use this information to optimize and schedule programs on a heterogeneous
system containing multiple approximation techniques; and

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:3

• ApproxHPVM enables software portability by using a hardware-agnostic, accuracy-aware
compiler IR and virtual ISA, and by partitioning the accuracy-energy-performance optimiza-
tions into a hardware-agnostic stage and a hardware-specific stage, where software can be
shipped between the two stages.

The ApproxHPVM system takes as input a program compiled to the ApproxHPVM Interme-
diate Representation (IR), and end-to-end quality metrics that quantify the acceptable difference
between approximate and non-approximate outputs. It generates final code that maps individual
approximable computations within the program to specific hardware components and specific
chosen approximation techniques, while satisfying end-to-end constraints with high probability
and attempting to minimize execution time and maximize energy savings under those constraints.
To our knowledge, no previous system achieves both full automation from end-to-end application-
level quality specifications, and support for multiple approximation mechanisms (on one or more
heterogeneous compute units). Moreover, previous systems do not provide object code portability.

ApproxHPVM solves three key technical challenges to achieve these goals:
• For applications with multiple approximable computations, it automatically translates end-
to-end error specifications to individual error specifications and bounds per approximable
computation, while statistically guaranteeing with high probability that the end-to-end
specifications are satisfied.

• It automatically determines how to map approximable computations to a variety of compute
units and multiple approximation mechanisms, including efficient special-purpose accelera-
tors designed to provide improved performance with lower accuracy guarantees.

• It optionally provides object code portability by decoupling the overall mapping and compi-
lation problem into a hardware-independent autotuning stage and a subsequent hardware-
dependent mapping stage.

The portability is optional because it does not always come for free: the optimization choices
may sometimes be suboptimal compared to a single, end-to-end and hardware-specific strategy, as
we show in our experiments. ApproxHPVM supports either strategy, and so the unified, hardware-
specific strategy can be used when portability is not a requirement.

An additional benefit of the two-stage mapping strategy is that the autotuning can be very slow,
while the second, hardware-specific stage is extremely fast, essentially just a small number of table
lookups. This enables approximate computing techniques to be supported in situations such as
dynamic scheduling (where accuracy-aware mapping decisions must be performed at run-time) and
hardware design space exploration (for designing hardware variations with different approximation
options or parameter settings). We are exploring both opportunities in our current research.
ApproxHPVM solves these challenges in a domain-specific manner, through a number of key

features. The ApproxHPVM Intermediate Representation (IR) is an extension of Heterogeneous
Parallel Virtual Machine (HPVM), a retargetable compiler infrastructure and portable virtual ISA
for heterogeneous parallel systems [Kotsifakou et al. 2018]. HPVM itself is built on LLVM [Lattner
and Adve 2004], and can use LLVM compiler passes and code generators for individual tasks. These
design choices allow ApproxHPVM to target diverse heterogeneous parallel systems, and also to
serve as a fully self-contained, portable virtual ISA that can be shipped and mapped to a variety of
hardware configurations. ApproxHPVM defines a set of approximable domain-specific operations
as part of the IR, which enables the compiler to identify approximable computations, and also to
define hardware-independent but domain-specific error metrics as attributes of those operations.
The initial domain supported in our work is tensor computations, which are general enough to
support a number of important application domains such as neural networks and image processing.
(Although this approach focuses on domain-specific operations, our design and general strategy

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:4 Hashim Sharif et al.

allow the specifications to be extended to generic low-level instructions.) It uses an autotuner
with randomized error injection to translate end-to-end specifications to individual error bounds
per approximable computation in a hardware-independent manner, while satisfying end-to-end
application metrics. It uses a simple lookup table per approximation method per IR operation to
perform the second-stage hardware-dependent manner very fast.

Specifically, we make the following key contributions:
Retargetable Compiler IR and Virtual ISA with Approximation Metrics: We show how
to capture hardware-agnostic approximation metrics in a parallel compiler IR, while preserving
retargetability across a wide range of heterogeneous parallel hardware. Moreover, the IR can serve
as a hardware-agnostic virtual ISA, and so software can be shipped between the two optimization
stages to achieve virtual object code portability for approximate computing applications.
Hardware-agnostic Accuracy Tuning: Given an end-to-end user-provided quality metric (e.g.,
reduced inference accuracy or PSNR for images), our hardware-independent accuracy tuner com-
putes the corresponding accuracy requirements for individual IR operations that can satisfy the
end-to-end goal. In this way, programmers need not understand the details of approximation
techniques in the underlying system.
Accuracy-aware Hardware Scheduling: The second stage maps individual tensor operations to
specific target compute units and to specific approximation options within those compute units, by
taking into account the error tolerance of operations and the accuracy guarantees provided by the
target compute unit. This mapping is a fast table-lookup, trained using offline accuracy profiling of
kernels running on the hardware.
Evaluation on Target Platform: To evaluate the efficacy of ApproxHPVM, we study 9 DNN
benchmarks and 5 image processing filters, using two different accuracy thresholds for each: 1% and
2% decreases in inference accuracy for the DNNs, and 20dB and 30dB loss of PSNR for the image
processing filters. We use the NVIDIA Jetson TX2 mobile SoC [NVIDIA 2018], which has 8GB of
shared memory between ARM cores and an NVIDIA Pascal GPU. We extend the platform by adding
a simulated version of a (fully programmable) Machine Learning accelerator called PROMISE,
which has previously been shown to provide orders of magnitude energy and throughput benefits
for a wide range of vector dot-product operations commonly used in ML kernels [Srivastava et al.
2018]. The combined platform provides 9 hardware settings to trade-off energy and accuracy for
each tensor operation: FP32 or FP16 on the GPU and 7 voltage swing levels on PROMISE. Executing
all operations on the GPU with FP32 precision is considered the exact case. Our results show that
ApproxHPVM can successfully assign different tensor operations to different compute units (GPU or
PROMISE) with different approximation options, achieving speedups of 1-9x and energy reductions
of 1.1-11.3x, while statistically guaranteeing the specified accuracy metrics with 95% probability.

2 APPROXHPVM INTERNAL REPRESENTATION AND SYSTEMWORKFLOW
Figure 1 shows the overall ApproxHPVM workflow. The primary input is a program written using
high-level abstractions of the Keras library [Gulli and Pal 2017], a popular open-source library
for deep neural networks on TensorFlow. Our frontend translates a Keras source program to the
ApproxHPVM IR. The second input is a programmer-specified end-to-end quality threshold, a
domain-dependent parameter. For the neural network domain, we use the acceptable loss in final
classification accuracy and for image processing pipelines, we use desired PSNR of the approximated
output.
ApproxHPVM’s overall goal is to map the computations of the program to the compute units

on a target system, along with selected approximation parameter values on each compute unit, so
that the program outputs satisfy the specified end-to-end accuracy. We decompose this mapping

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:5

Table 1. Tensor intrinsics in the ApproxHPVM representation.

Tensor Intrinsic Description
i8* @tensor.mul(i8* lhs, i8* rhs) Performs a matrix multiply operation on the input tensors.
i8* @tensor.conv(i8* input, i8* filter, i32 stride, i32
padding)

Applies a convolution filter on input tensor with given stride
and padding.

i8* @tensor.add(i8* lhs, i8* rhs) Element-wise addition on input tensors.
i8* @tensor.reduce_window(i8* input, i32 reduc-
tion_type, i32 window_size)

Performs a (configurable) reduction operation over a specified
window size on the input tensor.

i8* @tensor.relu(i8* input) Element-wise relu activation function.
i8* @tensor.clipped.relu(i8* input) Element-wise clipped relu activation function.
i8* @tensor.tanh(i8* input) Element-wise tanh activation function.

problem into a hardware-agnostic first stage and a hardware-specific second stage, for the reasons
described in Section 1.

Fig. 1. ApproxHPVM System Workflow

The hardware-agnostic accuracy-tuning phase
takes an end-to-end quality threshold and com-
putes the error tolerance for individual Approx-
HPVM operations, adding these requirements
in the IR. This phase guarantees that if these
error tolerances for individual operations are
(independently) satisfied, then the end-to-end
accuracy specificationwill also be satisfiedwith
some high probability, e.g., 95%. The output of
this stage is hardware-agnostic ApproxHPVM
code, which is legal LLVM and can optionally
be used as a virtual instruction set to ship the
code as “virtual object code” to one or more tar-
gets [Lattner and Adve 2004]. For each target,
a (static) accuracy-aware hardware mapping
phase chooses which compute units should ex-
ecute each tensor operation, and optimizes any
approximation parameters available on each
compute unit to minimize energy and/or maximize performance, while satisfying the individual
accuracy constraints on each operation. Finally, the code generation phase leverages the hardware-
specific backends to generate code for each compute unit. In our work, we build a) a GPU backend
that targets the cuDNN and cuBLAS libraries, which are optimized for high-level tensor operations,
and b) a PROMISE backend that targets a library that performs optimized tensor computations on
the PROMISE hardware simulator. The GPU can use FP32 or FP16 values for the network weights
and bias values, where FP32 is considered exact. PROMISE can only use 8-bit integers, and offers a
choice of seven voltage values to further trade off accuracy for energy (see Section 3.2).
ApproxHPVM is inspired by and builds on HPVM [Kotsifakou et al. 2018], a dataflow graph

compiler IR for heterogeneous parallel hardware. We extend the HPVM IR to support execution of
basic linear algebra tensor computations and to specify accuracy metrics for each operation. We
first briefly discuss the HPVM IR in the next subsection, and then describe our extensions to it.

2.1 Background: HPVM dataflow graph
HPVM [Kotsifakou et al. 2018] is a framework designed to address the performance and portability
challenges of heterogeneous parallel systems. At its core is the HPVM IR which is a parallel program

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:6 Hashim Sharif et al.

representation that uses hierarchical dataflow graphs to capture a diverse range of coarse- and
fine-grain data and task parallelism including pipeline parallelism, nested parallelism, and SPMD-
style (single program, multiple data) data parallelism. We showed that these abstractions allow
HPVM to compile from a single program representation in HPVM IR to diverse parallel hardware
targets such as multicore CPUs, vector instructions, and GPUs. ApproxHPVM leverages the existing
infrastructure of HPVM and extends it to compile to our heterogeneous approximate computing
platform.
An HPVM program consists of a set of one or more distinct dataflow graphs, which describe

the computationally heavy part of the program that is to be mapped to accelerators, and host code
that can initiate the execution and wait for the completion of the dataflow graphs. Nodes in the
HPVM dataflow graph (DFG) represent units of computation, and edges between nodes describe
explicit data transfer requirements between nodes. Each DFG node can be instantiated multiple
times at runtime, effectively enabling its computation to be performed multiple times. The dynamic
instances of a DFG must be independent, i.e., safe to execute in parallel. Different nodes can access
the same shared memory locations by passing pointers along edges, which is important for modern
heterogeneous systems that support cache-coherent global and partial shared memory. A node can
begin execution once it receives a data item on every one of its input edges.
The HPVM DFG is hierarchical, i.e., a node can itself contain an entire DFG. Such nodes are

called internal nodes, while other nodes are leaf nodes. Computations in leaf nodes are represented
by ordinary LLVM scalar and vector instructions, and can include loops, function calls, and memory
accesses. The @hpvm.createNode instruction is used to create a node in the HPVM DFG, and the
@hpvm.createEdge is used to connect an output of a node to an input of another node in HPVM.
The @hpvm.bind.input instruction is used to map an incoming edge of an internal node to the
input of a node in the internal DFG of this node. @hpvm.bind.output instructions serve a similar
purpose for outgoing edges.

The execution of a DFG is initiated by a “launch” operation in host code, and is asynchronous by
default. The host can block to wait for outputs from a DFG, if desired.

2.2 Tensor operations in ApproxHPVM
Domain-specific languages such as Tensorflow and Pytorch allow for improved programmer
productivity and have gained wide-spread adoption. Accordingly, compilers such as XLA for
TensorFlow [The XLA Team 2019] and TVM for MxNet [Chen et al. 2018] are beginning to support
efficient mapping of high-level domain-specific abstractions to heterogeneous parallel compute
units including CPUs, GPUs, FPGAs, and special-purpose accelerators, and to run-time libraries
like cuDNN or cuBLAS.
A general-purpose parallel IR such as HPVM translates high-level operations into generic low-

level LLVM instructions. However, such early lowering of domain-specific operations can result
in loss of important semantic information that may be needed by a back end to target run-time
libraries or domain-specific accelerators. Reconstructing the higher-level semantics after lowering
is generally very difficult and sometimes infeasible.
Instead, we choose to incorporate high-level but broadly applicable operations into HPVM IR

directly. In this work, we extend the HPVM IR representation with linear algebra tensor operations
that allow for naturally expressing tensor-based applications. Tensors are used in a wide range
of important domains, including mechanics, electromagnetics, theoretical physics, quantum com-
puting, image processing and machine learning. For instance, convolutional neural networks may
be expressed using generic linear-algebra operations. This design choice provides two essential
benefits: a) it enables efficient mapping of tensor operations to special purpose hardware and highly

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:7

define i8* @tensorConvNode(i8* %input, i8* %filter) {
%result = call i8* @tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding)
return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_weights) {
%result = call i8* @tensor.add(i8* %input, i8* %bias_weights)
return i8* %result

}

define i8* @tensorReluNode(i8* %input) {
%result = call i8* @tensor.relu(i8* %input)
return i8* %result

}

define void @DFG_root(i8* %W, i8* %X, %B) { ; Root node of the Dataflow Graph
; Creating DFG nodes
%nodeConv = call i8* @hpvm.createNode(i8* @tensorConvNode)
%nodeAdd = call i8* @hpvm.createNode(i8* @tensorAddNode)
%nodeRelu = call i8* @hpvm.createNode(i8* @tensorReluNode)
; Creating data-flow edges between different DFG nodes
call void @hpvm.createEdge(i8* %nodeConv, i8* %nodeAdd, 1, 0, 0, 0)
call void @hpvm.createEdge(i8* %nodeAdd, i8* %nodeRelu, 1, 0, 0, 0)
; Binding the parent input to inputs of the leaf nodes
call void @hpvm.bind.input(i8* %nodeConv, 0, 0, 0)
call void @hpvm.bind.input(i8* %nodConv, 1, 1, 0)
call void @hpvm.bind.input(i8* %nodeAdd, 2, 1, 0)
; Binding final DFG node output to parent node output
call void @hpvm.bind.output(i8* %nodeRelu, 0, 0, 0)

}

Fig. 2. Convolution Layer sub-operations represented as ApproxHPVM tensor intrinsics in HPVM dataflow
nodes. The data-flow nodes are connected through explicit dataflow edges using HPVM intrinsics.

optimized target-specific runtime libraries, such as cuDNN for GPUs, and b) it allows approxi-
mation analyses to leverage domain-specific information, because the approximation properties,
parameters, and analysis techniques usually are determined by properties of the domain.

Table 1 presents the list of tensor intrinsics introduced in ApproxHPVM. The tensor operations
in ApproxHPVM are represented as calls to LLVM intrinsic functions (the same approach used by
HPVM). The intrinsic calls appear to existing LLVM passes as calls to unknown external functions,
so existing passes remain correct. For applications where all data-parallelism occurs via the tensor
operations, the dataflow graph is only used to capture pipelined and task parallelism across nodes,
while data-parallelism is captured by the tensor operation(s) within individual nodes.

Figure 2 presents a single neural network convolution layer encoded in ApproxHPVM. The
encoding uses three tensor intrinsics: @tensor.conv, @tensor.add, and @tensor.relu. The DFG_root
function is the root of the dataflow graph, and would be invoked by host code. The root node is
an internal graph node, which creates the leaf nodes tensorConvNode, tensorAddNode and tensor-
ReluNode (using hpvm.createNode calls) and connects the nodes through dataflow edges (using
hpvm.createEdge calls). The leaf nodes invoke the tensor intrinsics to perform tensor computations
on the input tensors. The output of the last node in the dataflow graph is connected to the output
of the root node and is returned back to the caller.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:8 Hashim Sharif et al.

define i8* @tensorConvNode(i8* %input, i8* %filter) {
%result = call i8* @tensor.conv(i8* %input, i8* %filter, i32* %strides, i32* %padding, float

%relative_l1, float %relative_l2)
return i8* %result

}

define i8* @tensorAddNode(i8* %input, i8* %bias_tensor) {
%result = call i8* @tensor.add(i8* %input, i8* %bias_tensor, float %relative_l1, float

%relative_l2)
return i8* %result

}

define i8* @tensorReluNode(i8* %input) {
%result = call i8* @tensor.relu(i8* %input, float %relative_l1, float %relative_l2)
return i8* %result

}

Fig. 3. Tensor intrinsics annotated with accuracy metrics. The accuracy metrics Le1 and Le2 are passed as
parameters to the intrinsic calls.

2.3 Approximation Metrics in the IR
The second key feature of ApproxHPVM is the use of hardware-independent approximation metrics
that quantify the accuracy of unreliable and approximate computations. We attach error metrics,
defined below, as additional arguments to high-level tensor operations. Our design allows the
specifications to be added to generic low-level instructions, but we do not use that in this work. To
express the (allowable) difference between approximate and exact tensor outputs, we use vector
distance metrics:

• Relative L1 error: Le1 =
L1(A−G)

L1(G)
where L1(X ) = ∥X ∥1 =

∑
i |xi |

The numerator captures the sum of absolute differences between the approximate tensor
output A and the golden tensor output G. The denominator is the L1 norm of the golden
output tensor, so that the ratio is the relative error.

• Relative L2 error: Le2 =
L2(A−G)

L2(G)
where L2(X ) = ∥X ∥2 =

√∑
i x

2
i

This is similar to the Le1 norm, except that the numerator represents the Euclidean distance
and the denominator uses the L2 norm.

Note that the relative L1 error and relative L2 error are non-negative and lie in the the range
[0, +∞). Figure 3 shows how the approximation metrics are represented in the compiler IR. The two
approximation parameters for each tensor operation are attached as additional arguments to the
respective intrinsic functions. While our current system only uses the two metrics described, our
implementation and analyses can be easily extended to include additional approximation metrics.

2.4 Keras Frontend
Keras [Gulli and Pal 2017] is a popular neural-network library that can run on top of Tensorflow
and other frameworks. Keras provides a simple, programmable interface for providing high-level
descriptions of neural networks.We choose Keras since it allows us to identify the higher level tensor
computations that can be mapped to the ApproxHPVM tensor intrinsics. Moreover, since Keras
internally maintains the data-flow relations across operations, this allows the front end to extract
the data-flow information and translate it to data-flow edges in ApproxHPVM relatively easily.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:9

model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),

activation='relu', padding = 'same',
input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu', padding = 'same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dense(num_classes, activation='relu'))
model.add(Activation('softmax'))

Fig. 4. LeNet-5 defined in Keras

Figure 4 presents the popular LeNet-5 neural network [LeCun et al. 1998] in Keras. The LeNet
architecture consists of 2 convolution layers and 2 fully-connected layers followed by a softmax
layer. Moreover, the convolution layer is followed by pooling layers that downsample the input
size. The frontend translates these high-level operations to ApproxHVPM tensor intrinsics. For
instance, the Conv2D operator in the example is translated to 3 tensor operations in the IR -
@tensor.conv, @tensor.add, and @tensor.relu. Similarly, the Dense operator (fully-connected
layer) is mapped to @tensor.mul, @tensor.add, and @tensor.relu. The MaxPooling operator is
mapped one-to-one to the @tensor.reduce_window IR operation with appropriate parameters.
The parameters passed to each Keras operator (kernel sizes, pool sizes etc.) are also appropriately
passed as parameters to the intrinsic calls in the IR. Figure 2 shows how a single Conv2D operator
in Keras maps to ApproxHPVM code with high-level tensor intrinsics.

3 ACCURACY-AWARE MAPPING AND OPTIMIZATION
In this section, we describe the accuracy-aware mapping of computations to hardware compute
units in the ApproxHPVM system. ApproxHPVM uses a hardware-agnostic accuracy tuning phase
(Section 3.1) to determine per-operation accuracy requirements and an efficient accuracy-aware
scheduler (Section 3.2) that maps the approximable components to hardware compute units and
hardware-level system parameters.

3.1 Hardware-Agnostic Accuracy Tuning
The goal of hardware-independent accuracy tuning is to compute the accuracy requirements
(represented by the Le1 and L

e
2 defined earlier) for each operation so that, if the individual requirements

are satisfied, the user-provided end-to-end quality metric is met. For instance, a user may specify
an acceptable classification accuracy degradation of 1%, allowing the tuner to lower the accuracy
constraints on a tensor multiply operation by 10%. By computing the individual accuracy constraints,
the tuner enables the hardware scheduler to map individual tensor operations to approximate
hardware independently. This independence goal is a compromise: better energy efficiency or
performance or both might be achieved if two or more operations were considered together in the
second stage, but that would require a combinatorial optimization problem across all operations,
compute units, and approximation choices. Using independent decisions allows a much faster
decision problem in the second stage.

Figure 5 describes the overall workflow of the accuracy-tuning phase. The heart of the accuracy-
tuner is an autotuning search that uses statistical error injection to model potential run-time errors
and directly executes the program on a standard GPU to measure the end-to-end accuracy vs.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:10 Hashim Sharif et al.

the expected (“golden”) output. If the hardware target was known, the autotuner could skip the
(artificial) error injection and instead execute the program on the target with a selected mapping
and selected approximation settings to estimate the error. Instead, the autotuner uses a hardware-
agnostic error model and objective function to perform the search. Since our tuner uses statistical
error injection to validate the accuracy constraints, the autotuner enforces the accuracy threshold
to be met with a certain tunable success rate (fixed at 95% in our experiments).

Fig. 5. Hardware-agnostic accuracy-tuning workflow.

Autotuning framework. Considering real-
istic applications with multiple tunable oper-
ations, the size of the search space makes ex-
haustive search intractable. To enable efficient
search, we use OpenTuner [Ansel et al. 2014],
an extensible framework for building domain-
specific autotuners. OpenTuner allows users to
configure a domain-specific search space and
specify a custom objective function. Prior work
has shown that OpenTuner provides promis-
ing results with enormous search spaces, ex-
ceeding 103600 possible configurations. Lever-
aging OpenTuner, we build our custom accu-
racy tuner that tunes the error knob for each
tensor operation while minimizing an objective
function. The objective functions we use are de-
scribed below. In our experiments, we are able
to extract high-quality configurations while searching through only a small subset of the full search
space. For our experiments, we run OpenTuner for a total of 1000 iterations, where each iteration
generates a unique configuration.

Inputs. The accuracy-tuner takes as input an end-to-end accuracy threshold T, and the target
program compiled to ApproxHPVM, and generates a set of configurations, defined below.

Error Injection. The accuracy tuner works by injecting errors into the outputs of individual
tensor operations and predicting their impact on end-to-end accuracy. The key to making our
decomposed strategy work is to do this analysis in a hardware-independent manner. We achieve
this by using a simple, hardware-agnostic error model, where errors in the outputs of tensor values
X[i] are injected as: X [i] = X [i] × (1+ E ×N(0, 1)). The parameter E provides a simple, linear error
model optimized by the autotuner, producing hardware-agnostic error values that can be mapped
by the back-ends to hardware-specific approximation choices.
In our analysis, we choose the value of E from 1 to 15, increasing linearly, thereby linearly

increasing the Le1 and Le2 metrics. In our experiments, we tune the values of the L1 error norm
ranging from 0.5% to 40%.

Search Space and Configurations. A configuration in the autotuning search consists of a
value of the error parameter E assigned to each of the tensor operations in the target program. By
selecting this value at each operation, the autotuner controls the magnitude of error injected into
each tensor operation. For instance, one configuration for the code in example 2 may look like:

Configuration: {
hpvm.tensor.mul: 5,
hpvm.tensor.add: 6,
hpvm.tensor.tanh: 4

}

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:11

For every configuration generated by the accuracy tuner, the final accuracy is empirically
evaluated by running the program with the tuned level of error injection. If the measured end-to-
end accuracy is below the threshold, the configuration is rejected. Otherwise, the configuration is
saved as a candidate configuration.

Measuring Success Rate. Since we used statistical error injection to evaluate candidate con-
figurations, our end-to-end “guarantee” can be probabilistic, at best. Consistent with prior work
in optimistic parallelization [Misailovic et al. 2013], we use statistical testing to determine the
probabilistic guarantee provided by each candidate configuration. The statistical accuracy test runs
each candidate configuration with additional random error injection trials, where the magnitude
of error is determined by the selected error knobs. We treat each run as a Bernoulli trial which
succeeds if the execution satisfies the user-defined accuracy threshold T and fails otherwise. For
measuring the success rate Rsuccess , we execute each configuration for 100 runs and accept a
configuration if the statistical accuracy test has a minimum success rate of 95%.

Hardware-independent objective functions. All remaining candidate configurations satisfy
the end-to-end accuracy threshold with a minimum success rate Rmin , and can be ranked to achieve
our goal of maximizing energy efficiency and performance. We use a hardware-independent
objective function to do so, using operation count as a proxy for execution time, and assuming
that higher allowable errors yield better energy efficiency. Thus, we heuristically compute a cost
function CTotal of a candidate configuration as:

CTotal (conf iд) =
N∑
i=0

C(op(i),E(i)) (1)

The total cost of a configuration is defined as the sum of the cost of each operation at the selected
error knob. The individual operation costs must increase with execution time and decrease as
allowable error increases. We include three alternative objective functions, where we use the error
knob E as a proxy for error:

C1(op,E) =
Nc (op)

logE
C2(op,E) =

Nc (op)

E
C3(op,E) =

Nc (op)

E2
(2)

Here, Nc (op) computes the total count of multiplication and add operations performed as part of
the higher-level tensor operation, op. Note that the more expensive operations (higher Nc (op)) are
likely to prefer a higher error value, which prefers scheduling these operations for more approximate
hardware, in the hope of achieving higher overall benefits. The autotuner generates configurations
once for each of the objective functions. We ship the IR with the top 10 configurations for each
of the three objective functions, allowing the hardware scheduler to select the best performing
configuration for the specific deployment.

3.2 Accuracy-Aware Scheduling
Given an application in ApproxHPVM along with error norms Le1 and L

e
2 for each tensor operation

in the ApproxHPVM dataflow graph, the goal is to choose the right hardware setting for each
operation. We envision that multiple software and hardware approximate computing techniques
will be available as a choice for each operation. The scheduler attempts to find a configuration that
maximizes energy efficiency and performance while meeting the individual accuracy constraints
per operation.
Accuracy-aware scheduling presents these challenges: (C1) given error metrics, selecting a

hardware knob corresponding to each operation. (C2)Maximizing energy and/or performance based
on an objective function. (C3) Incurring low runtime cost, thereby enabling dynamic scheduling.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:12 Hashim Sharif et al.

Approximate Computing Hardware: In this work, we map and compile tensor operations onto
two hardware compute units: an NVIDIA GPU and a programmable mixed-signal accelerator
for machine learning called PROMISE [Srivastava et al. 2018]. Computations are offloaded to an
NVIDIA GPU using the cuDNN library, which supports both 32-bit (FP32) and 16-bit floating point
(FP16) operations. FP16 computation reduces execution time and energy by 1.5-4x compared to
FP32, at the cost of reduced accuracy [Ho and Wong 2017; Micikevicius et al. 2018].

The PROMISE accelerator employs in-memory, low signal-to-noise ratio (SNR) analog computa-
tion on the bit lines of an SRAM array to perform faster and energy efficient matrix operations,
including convolutions, dot-products, vector adds, and others. As shown in [Srivastava et al. 2018],
PROMISE consumes 3.4-5.5x less energy and has 1.4-3.4x higher throughput than application-
specific custom digital accelerators, which are themselves known to be orders of magnitude better
in terms of energy-delay product than NVIDIA GPUs. The PROMISE accelerator instruction set has
a parameter swing voltage, which controls the bit-line voltage swing in the accelerator and allows a
trade-off between accuracy and energy. The swing parameter can take up to seven different values
giving us seven choices for the PROMISE hardware, denoted in this paper as P1, P2, . . . , P7, in
increasing order of voltage and decreasing error.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

1

2

3

4

5

6

7

8

L1
 E

rr
o

r

Ti
m

e
 a

n
d

 E
n

e
rg

y 
Im

p
ro

ve
m

e
n

t

K

FP16 Time

P7 Time

P1 Time

FP16 Energy

P7 Energy

P1 Energy

FP16 L1 Error

P7 L1 Error

P1 L1 Error

Fig. 6. Time and energy improvement, and Le1 for the
following hardware knobs: FP16, P7, and P1. It can be
seen that PROMISE is faster and less accurate than
FP16, which is faster and less accurate than FP32. Note
that P1 and P7 Time curves overlap since execution
time is constant across different swing values.

For our hardware platform including a GPU
and PROMISE, we have 9 different choices
(FP16, FP32 onGPU and P1-P7 on PROMISE) for
mapping each tensor operation. Figure 6 shows
the speedup, energy reduction, and accuracy of
3 hardware settings – P1, P7, and FP16. These
are measured for a matrix multiplication of ma-
trixM1 of size 5000 × K and matrixM2 of size
K × 256, where K ∈

{
28, 29, . . . , 215

}
. The ma-

trices are initialized with random values from
uniform distribution U(0, 1). For readability,
we do not show curves for P2-P6, which follow
the same trends as P1 and P7. The left Y-axis
shows speedup and energy reduction over FP32.
The right Y-axis depicts error in the computa-
tion by showing Le1 of the matrix multiplication
for each hardware setting.

The graph shows that the Le1 of different hard-
ware settings remains constant for different values of K . FP16 is most accurate followed by P7 and
P1 in that order. FP16 is slower than P7 and P1 for all K and also consumes more energy than P7
and P1, except for an anomaly for K = 256, 512. As the swing voltage level decreases in PROMISE,
the energy consumption reduces, hence P1 has lower energy than P7. However, the execution
time remains constant across the different swing values in PROMISE, hence P7 and P1 time curves
overlap.
Mapping Le1 and Le2 metrics to Hardware Settings:We generated similar graphs to Figure 6 for
all ApproxHPVM tensor operations for each hardware setting FP16, P7, P6, . . . P1. These operations
include tensor multiplication, addition, convolution, activations (tanh, relu, clipped relu), and
window reductions (max-pooling, avg-pooling, min-pooling).We used this data to find themaximum
Le1 and L

e
2 constraints tolerable by each hardware setting for each operation. We observed that the

Le1 and L
e
2 metrics for each hardware setting had very little variation across different tensor sizes,

thereby serving as a useful metric for measuring errors in tensor operations. Our backend maps

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:13

a tensor operation to the least accurate hardware setting that meets the Le1 and L
e
2 constraints of

the operation. Since the mapping from individual operation L1 error and L2 error to hardware
knobs is merely a table lookup operation, hardware scheduling is an inexpensive step. This makes
our hardware specific mapper very lightweight, which in the future can be used for dynamic
scheduling or for SoC design space exploration. Moreover, our approach is extensible to other
hardware compute units since it merely requires adding a mapping from the hardware-agnostic
approximation metrics to the hardware-specific approximation knobs of the target hardware.

3.3 Code Generation
In its final phase, the ApproxHPVM compiler generates code for each operation corresponding to
the selected compute unit. We added new backends for PROMISE and for an optimized cuDNN and
cuBLAS based library runtime for GPU. Since the support for backends is flexible, it can be extended
to other approximate computing hardware platforms. The back-end code generators translate
dataflow graph nodes (containing tensor intrinsics such as @hpvm.tensor.mul) to functions that
invoke the corresponding DNN operations for GPU or PROMISE.
Code generation for PROMISE requires an extra pattern-driven fusion operation because the

hardware can perform an entire layer operation as a single PROMISE instruction [Srivastava
et al. 2018]. A layer operation in a DNN usually maps to the following common patterns for
fully-connected and convolution layers, respectively:

YFC = f (X ·W + B) YConv = f (X ⊛W + B)

whereW , X and B are the weight tensor, input tensor, and bias tensor, and f (·) is the activation
function (sigmoid, relu, tanh, etc.). We implement a pattern-driven Node Fusion transformation
that identifies sequences of nodes performing these operations and fuses the nodes into a single
ApproxHPVM dataflow node if they are all mapped to PROMISE.

4 METHODOLOGY
4.1 Platform

Table 2. System parameters for TX2 and PROMISE.

TX2 Parameters
CPU Cores 6
GPU Cores 2

GPU Frequency 1.12 GHz
DRAM Size 8 GB

DRAM Bandwidth 58.4 GB/s peak; 33 GB/s sustained
DRAM Energy 20 pJ/bit

PROMISE Parameters
Banks 256 × 16 KB

Frequency 1 GHz

For our experiments, we assume a modern
System-on-Chip (SoC) architecture with
CPUs, GPUs, and accelerators that com-
municate via main memory. The specific
system we model is an NVIDIA Jetson TX2
developer kit [NVIDIA 2018], augmented
with the PROMISE programmable machine
learning accelerator [Srivastava et al. 2018].
PROMISE does not exist as real hardware,
and we instead obtained the PROMISE sim-
ulator from its authors and extended it with
a memory timing and energy model.
To model the overall system, one ap-

proach would be to use a cycle-accurate integrated CPU-GPU-PROMISE simulator, but this is
impractical due to several prohibitive limitations of current state-of-the-art GPU simulators such
as GPGPU-Sim. First, they do not support dynamic linking of libraries such as cuDNN and cuBLAS.
Moreover, they do not support newer PTX instructions required by these libraries. Second, re-
gardless of library support, simulator execution is orders of magnitude slower than real hardware,
which makes running real world DNNs and realistic data sets infeasible.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:14 Hashim Sharif et al.

Instead, we opted for a split approach to model the SoC. We ran the GPU tensor operations on the
real GPU and the PROMISE tensor operations on the PROMISE simulator. Since all communication
between different system agents occurs via main memory, reads/writes to/from main memory
sufficientlymodel communication between the CPU, GPU, and PROMISE. For instance, if a particular
layer executes on the GPU and the next layer executes on PROMISE, we just assume that PROMISE
obtains all the required data from main memory. Therefore, this approach accurately models the
behavior of a modern SoC architecture.
For our GPU experiments, we used an NVIDIA Jetson TX2 developer kit [NVIDIA 2018]. This

board contains the NVIDIA Tegra TX2 SoC [Franklin 2018], that contains a Pascal-family GPU
with 2 Streaming Multiprocessors (SMs), each with 128 CUDA cores (FP32 ALUs). The board has
the same system architecture as our target SoC. Table 2 lists the relevant characteristics of both
Tegra TX2 and the PROMISE simulator. Finally, due to our split approach, the functional and timing
aspects of our experiments were split as well.

4.2 Functional Experiments
To verify the functional correctness of our generated binaries and to measure the end-to-end
accuracy of each networkwith different configurations, we used the GPU in tandemwith PROMISE’s
functional simulator. If a layer was mapped to the GPU, the corresponding tensor operations were
executed on the GPU. If a layer was mapped on PROMISE, it was offloaded to PROMISE’s functional
simulator. Consequently, the final result was the same as it would be if these operations were all
executed on a real SoC containing both a GPU and PROMISE. Since the PROMISE simulator adds
Gaussian random error to each run, we use statistical testing to measure the fraction of program
runs that satisfy the end-to-end quality metric - we call this Rsuccess . We ran each configuration
200 times to obtain the mean and standard deviation of the classification accuracy, and Rsuccess of
the configuration.

4.3 Timing Experiments

GPU. To measure the execution time and energy of tensor operations on the GPU, we built a
performance and energy profiling tool. While an application is running, the tool continuously reads
GPU and DRAM power from Jetson’s voltage rails via an I2C interface [NVIDIA Developer Forums
2018] at 1 KHz (1 ms period). Furthermore, it associates each GPU tensor operation with a begin
and end timestamp pair. Once the application has finished execution, execution time is calculated
by simply taking the difference between the begin and end timestamp of the tensor operation. Then,
energy is calculated by integrating the power readings using 1 ms timesteps.
We used this tool to obtain per-tensor operation time and energy for both FP32 and FP16 for

each benchmark. To obtain reliable results for each operation, we did 100 runs per benchmark,
and used the average time and energy. The coefficient of variation was less than 1% after 100 runs.
Instead of rerunning an operation on the GPU each time we ran a configuration, we collected these
results once per benchmark and tabulated them. Then, whenever a particular tensor operation or
network layer was mapped to the GPU, we obtained the required values from this lookup table.
PROMISE. Using the functional simulator obtained from the authors of PROMISE, we built a
timing and energy model for PROMISE. Since the compute and memory access pattern of PROMISE
is known a priori based on the operation being performed, a cycle-accurate simulator is not required
and analytically computing both time and energy is sufficient. This analytical model first calculates
the mapping of input matrices to PROMISE’s banks, and then computes the time and energy of
1) loading the data from main memory, 2) performing the computation, and 3) writing data back
to main memory. We extended the baseline PROMISE design with a programmable DMA engine

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:15

Table 3. Description of Evaluated Benchmarks.

(a) DNN Benchmarks, corresponding datasets, layer count, and
classification accuracy with FP32 baseline.

Network Dataset Layers Accuracy
FC-4 MNIST 4 93.72%
LeNet MNIST 4 98.7%
AlexNet CIFAR-10 6 79.16%

AlexNet v2 CIFAR-10 7 85.09%
ResNet-18 CIFAR-10 22 89.44%
VGG-16-10 CIFAR-10 15 89.41%
VGG-16-100 CIFAR-100 15 66.19%
MobileNet CIFAR-10 28 83.69%

Shallow MobileNet CIFAR-10 14 88.4%

(b) Image Processing Benchmarks and corresponding datasets.
The Description shows the composition of filters that forms the
particular image pipeline.

Filter Dataset Description
GEO Caltech 101 Gaussian-Emboss-Outline
GSM Caltech 101 Gaussian-Sharpen-MotionBlur
GEOM Caltech 101 Gaussian-Emboss-Outline-MotionBlur
GEMO Caltech 101 Gaussian-Emboss-MotionBlur-Outline
GSME Caltech 101 Gaussian-Sharpen-MotionBlur-Emboss

(pDMA) [Jamshidi et al. 2014; Komuravelli et al. 2015]. PROMISE operates on INT8 data and requires
a data layout transformation, both of which are handled by pDMA. All the required data is loaded
into PROMISE before starting the computation.
For the compute model, we used the pipeline parameters obtained from the authors of

PROMISE [Gonugondla et al. 2018]. For the main memory model, we empirically measured peak
sustained bandwidth and energy per bit on our Jetson TX2 development board to ensure that both
PROMISE and the GPU used the same memory system. The DRAM energy reported by PROMISE
and the energy measured on Jetson TX2 was highly correlated, validating our model.
Integration. Similar to the functional experiments, we obtained the total time and energy for a
network by summing the time and energy of each layer. If the layer was scheduled on PROMISE,
PROMISE’s timing and energy simulator was invoked to get the time and energy. If the layer was
scheduled on the GPU, a lookup was performed on the FP32/FP16 time and energy tables that were
generated after profiling. If consecutive operations required a different precision, quantization
was performed and its time and energy overhead was added to the total. PROMISE performed
quantization internally while a CUDA kernel performed quantization for the GPU.

4.4 Benchmarks
Our evaluation includes 9 DNN benchmarks and 5 image processing pipelines, detailed in Table 3a
and Table 3b, respectively.
DNN Benchmarks. We include a range of different convolutional neural networks for 3 different
datasets: MNIST [LeCun et al. 1998], CIFAR-10, and CIFAR-100 [Krizhevsky and Hinton 2009]. The
MNIST dataset includes 60K grey-scale images of handwritten digits 0 through 9. The CIFAR-10

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:16 Hashim Sharif et al.

dataset contains 60K 3 × 32 × 32 sized color images belonging to 10 classes, 6K images per class.
CIFAR-100 includes 60K 3 × 32 × 32 sized color images belonging to 100 distinct classes, with
600 images belonging to each class. For each of the three datasets, the dataset is divided into 50K
images for training and 10K for inference. The inference set is divided equally into calibration
and validation sets (5K each). The calibration set is used for the autotuning phase that identifies
approximable computations, and the validation set is used for evaluating the performance, energy,
and accuracy of each autotuned configuration (combination of hardware knobs). We use popular
DNN benchmarks including LeNet[LeCun et al. 1989], AlexNet [Krizhevsky et al. 2012] (reference
implementation [Yang 2019]), ResNet-18 [He et al. 2016], VGG-16 [Simonyan and Zisserman
2014] (reference implementation [Geifman 2019]), MobileNet [Howard et al. 2017], and Shallow
MobileNet [Howard et al. 2017]. We trained VGG-16 for both CIFAR-10 and CIFAR-100 since it
has been shown to provide relatively good end-to-end accuracy on both the datasets [Geifman
2019]. We also created a variant of Alexnet (called Alexnet v2) that includes an extra convolution
layer (a total of 6 convolution layers) and provides approximately 6% higher end-to-end accuracy.
We include MobileNet which is an efficient DNN model with respect to both performance and
model size. We also include a shallow version of the original MobileNet architecture (similar to the
shallow model proposed in the original work) called Shallow MobileNet that includes 14 layers
as opposed to 28 layers in the full MobileNet model. Shallow MobileNet provides approximately
5% higher accuracy on CIFAR-10 compared to the full MobileNet model, because for CIFAR-10,
which involves small images and only 10 classes, the larger network is prone to overfitting. We
also include a 4 layer fully-connected DNN, called FC-4, trained on the MNIST dataset.
Image Processing Benchmarks.We also include 5 convolution-based image processing bench-
marks (Table 3b). We construct these benchmarks by including different combinations of commonly-
used image filters: Gaussian (G), Emboss (E), Outline (O), MotionBlur (M), and Sharpen (S). At the
IR level, the filters are represented as tensor convolutions, with the exception of Emboss which is
a convolution followed by a bias add operation. To evaluate the filters, we used the Caltech 101
dataset [Fei-Fei et al. 2004] that includes a set of 9145 images. The dataset includes a mix of small
and large images, so we resized all the images to 240 × 300 pixels to allow running the filters on a
batch of images. We converted the color images to grey-scale since our cuDNN-based backend does
not support convolution on separate RGB channels. For evaluation, we split the images into two
sets of 4572 images for calibration and validation. The calibration set is used by the autotuning step,
and the validation set is used to evaluate the average PSNR and violation rate of each configuration
provided by the autotuner.

4.5 Quality Metrics
For the DNN benchmarks, we studied an accuracy loss of 1% (Loss1%) and 2% (Loss2%). Loss1% refers
to an accuracy degradation of 1% with respect to the baseline and Loss2% refers to an accuracy
degradation of 2% compared to the baseline. The baseline uses FP32 for all computations with no
approximation.
For the image processing benchmarks, we use PSNR to quantify the error in the output of

the processed image in comparison to the baseline. We use two PSNR loss thresholds of 30db
(PSNR30) and 20db (PSNR20). (Quality loss of about 20-25dB is considered to be acceptable in
lossy situations, such as wireless transmission [Li and Cai 2007; Thomos et al. 2006].) To illustrate
the visual impact, Figure 7 shows the impact of such losses between for the output of the GSM
pipeline applied to a sample image, at "exact" (FP32 precision on the GPU), and with additional
losses of PSNR30, and PSNR20 due to approximations. The GSM pipeline introduces noticeable
blur without approximations. PSNR 32.2 dB only causes a small perceptible difference in the image,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:17

(a) Original (b) GSM (FP32) (c) GSM (PSNR = 32.2dB) (d) GSM (PSNR = 22.3dB)

Fig. 7. Sample output from GSM (Gaussian-Sharpen-MotionBlur) benchmark. 7a: Original image; 7b: GSM
baseline output (FP32 without approximation); 7c, 7d: GSM output approximated at PSNR30 and PSNR20
respectively.

while reducing PSNR to 22.3 dB results in an observable visual difference, but still acceptable in
many situations. While autotuning these filter pipelines, we also measure the violation rate that
quantifies the fraction of images that do not meet the target PSNR. Consistent with prior work in
approximating video filters [Xu et al. 2018], we use 5% as an acceptable threshold for the violation
rate. Similar to the DNN benchmarks, the baseline uses FP32 for all filter computations.

5 EVALUATION
This section presents an evaluation of ApproxHPVM. Our evaluation seeks to answer the following
research questions:
(1) What are the performance and energy benefits provided by the ApproxHPVM framework,

which uses only application-level end-to-end error tolerance specifications?
(2) Does increased error threshold allow for increased performance and energy benefits?
(3) Can ApproxHPVM techniques apply to different end-to-end quality metrics (PSNR, Accu-

racy)?
(4) How does two-stage autotuning using a hardware-agnostic first stage compare against direct

hardware-specific autotuning?
(5) How is performance affected by changes in hardware configuration?

5.1 Performance and Energy Evaluation

DNN Benchmarks. Figure 8 shows the aggregate results for all nine DNN benchmarks for Loss1%
and Loss2% experiments.

For each network, we report the results for the best performing configuration with respect to the
energy-delay (ED) product. The configuration is a set of hardware knobs that control the level of
approximation. In our system, the knobs for approximation are FP16 (16-bit FP), and the 7 distinct
swing voltage levels of the PROMISE accelerator. To give more insight into how our accuracy-aware
scheduler maps DNN layers to hardware, Figure 8c shows the best configuration selected by the
ApproxHPVM autotuner and hardware mapper. Each entry shows the number of DNN layers
mapped to each distinct hardware setting. For instance, for Loss1%, ApproxHPVM maps 1 layer
in LeNet to FP16, 1 layer to P7 (swing voltage level 7), and 2 layers to P4 (swing voltage level 4).
In Section 5.2 we compare how well the configurations attained by the hardware-agnostic tuner
perform in comparison to the optimal (in scenarios where determining the optimal is feasible) and
against hardware-specific autotuning (where computing optimal is not feasible).
Figure 8 shows that nearly all configurations given by the ApproxHPVM framework improve

upon the FP32 baseline. The performance improvement ranges from 1.02x (ResNet Loss1%) to 9x

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:18 Hashim Sharif et al.

0

1

2

3

4

5 loss1% loss2%
9x 9x

(a) Speedup

0

1

2

3

4

5

6 loss1% loss2%
10.6x 11.3x

(b) Energy Reduction
Mean Classification Accuracy Hardware Knob Settings

FP32 Loss1% Loss2% Loss1% Loss2%
FC-4 93.72 93.47 ± 0.16 92.41 ± 0.21 P7:3, P6:1 P4:3, P5:1
LeNet 98.7 98.28 ± 0.06 98.26 ± 0.06 FP16:1, P4:2, P7:1 FP16:1, P4:3, P5:1
AlexNet 79.16 78.51 ± 0.18 78.43 ± 0.16 FP16:1, P6:3, P7:2 FP16:1, P7:1, P6:1, P4:3

AlexNet v2 85.09 84.52 ± 0.12 84.45 ± 0.13 FP32:3, P7:4 FP32:2, FP16:1, P7:2, P6:2
ResNet-18 89.44 88.84 ± 0.10 88.54 ± 0.12 FP32:1, FP16:18, P7:3 FP32:1, FP16:16, P7:5
VGG-16-10 89.41 88.64 ± 0.12 87.77 ± 0.16 FP32:4, FP16:4, P7:7 FP32:1, FP16:4, P7:2, P6:1, P5:2, P4:5
VGG-16-100 66.19 65.97 ± 0.15 64.97 ± 0.13 FP32:1, FP16:9, P7:5 FP32:1, FP16:8, P7:3, P6:3
MobileNet 83.69 83.05 ± 0.13 82.35 ± 0.14 FP16:25, P7:3 FP16:22, P7:6

MobileNet-SH 88.4 88.08 ± 0.11 86.74 ± 0.15 FP16:12, P7:2 FP32:1, FP16:9, P7:3, P6:1

(c) Mean Classification Accuracy and Hardware Knob Settings

Fig. 8. Speedup and energy reduction (over baseline) of all nine DNNs for Loss1% and Loss2% experiments
(higher is better). 8a: Speedup. 8b: Energy reduction. 8c: Mean accuracy ± standard deviation, and hardware
knob settings showing the number of layers mapped to each type of hardware knob (for both Loss1% and
Loss2%) where FP32: 32-bit floating point on GPU; FP16: 16-bit floating point on GPU; Px : PROMISE with
swing x .

(FC-4 Loss2%). The energy reduction ranges from 1.14x (ResNet Loss1%) to 11.3x (AlexNet Loss2%).
Most networks obtain from 1.5x–4x (1.5x–5x) improvements in performance (energy). Figure 8c
shows the mean and standard deviation of the end-to-end accuracy for the different DNNs for both
Loss1% and Loss2% experiments. The final accuracy of each configuration is within the corresponding
allowable accuracy loss threshold of 1% and 2%.
We observe most of the DNNs to be amenable to using the approximation mechanisms for

multiple layers. Figure 8c shows that a number of layers in the DNNs are often mapped to the
PROMISE accelerator, which provides significant performance and energy improvements over the
GPU. AlexNet obtains the highest energy benefit (11.3x energy reduction) since 5 of the total 6 layers
are mapped to PROMISE in both Loss1% and Loss2% experiments. Note that whenmoving from Loss1%
to Loss2%, more layers in AlexNet could utilize lower PROMISE voltage levels (that provide higher
benefits), thereby providing an extra 6% energy reduction. For VGG-16-10, the difference is more
significant with 48% extra energy reduction when moving from Loss1% to Loss2%. For MobileNet
and Shallow MobileNet, we observe energy reductions ranging from 1.5x to 1.78x and performance
improvements ranging from 1.21x to 1.39x. Note that the MobileNet DNN has been specifically
optimized for improved performance, and Shallow MobileNet achieves even better performance
while also preserving high accuracy. Our results show that by exploiting approximations we can
achieve further gains even for such optimized models. For ResNet-18, hardware-agnostic tuning
only provides marginal performance (up to 1.1x) and energy gains (up to 1.2x) for both Loss1% and

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GEO GSM GEOM GEMO GSME

p30 p20
6.1x

(a) Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GEO GSM GEOM GEMO GSME

p30 p20
2.1x 7.9x

(b) Energy Reduction
PSNR30 PSNR20

GEO 38.9 ± 2.52 38.9 ± 2.53
GSM 34.18 ± 2.3 24.26 ± 2.4
GEOM 40.52 ± 1.56 38.48 ± 1.67
GEMO 50.41 ± 1.91 28.55 ± 2.22
GSME 51.28 ± 2.79 28.62 ± 2.44

(c) Mean PSNR

PSNR30 PSNR20

GEO FP16:3 FP16:3
GSM FP16:2, P7:1 FP16:1, P7:1, P6:1
GEOM FP16:3, P7:1 FP16:3, P6:1
GEMO FP16:4 FP16:3, P7:1
GSME FP16:4 FP16:3, P7:1

(d) Hardware Knob Settings

Fig. 9. Speedup and energy reduction (over baseline) of all 5 image processing benchmarks for PSNR30 (p30)
and PSNR20 (p20) thresholds. 9a: Speedup. 9b: Energy reduction. 9c: Mean PSNR ± standard deviation. 9d:
Hardware knob settings shows the number of convolution layers mapped to each type of hardware knob (for
both PSNR30 and PSNR20) where FP32: 32-bit floating point on GPU; FP16: 16-bit floating point on GPU; Px :
PROMISE with swing x .

Loss2%. In Section 5.2, we show that for ResNet, the hardware-specific tuner also provides small
improvements, showing that this DNN architecture is not very amenable to the approximation
choices offered by our hardware platform. Other approximation techniques may achieve better
gains for ResNet.
Image Processing Benchmarks. Figure 9 shows the aggregate results for all 5 image processing
benchmarks. Figures 9a, 9b, 9c show the performance improvement, energy reduction, and mean
PSNR of PSNR30 and PSNR20 experiments.
Figure 9 shows that nearly all configurations given by the ApproxHPVM framework achieve

performance and energy benefits. The performance improvement ranges from 1.04x (GEO PSNR30)
to 6.1x (GSM PSNR20). The energy reduction ranges from 1.2x (GEO PSNR30) to 7.9x (GSM PSNR20).
Note that for GSM, we see a further energy reduction of 3.7x and performance improvement of 3.5x
when reducing the quality metric from PSNR30 to PSNR20, as the autotuner and mapper are able
to offload the Gaussian and MotionBlur filters to PROMISE. We see similar trends for the GEOM,
GEMO, and GSME benchmarks when reducing the quality threshold to PSNR20 (Figure 9d).

The FP16 computations also provide both improved performance and energy efficiency though
not as significant as the PROMISE accelerator. For instance, for the GEO benchmark the autotuner
could not map any operation to PROMISE for either PSNR30 or PSNR20 but we still achieve a small
4% performance and 18% energy improvement with FP16. For the GEO filter benchmark, we do
not observe any benefits when moving from PSNR30 to PSNR20 since none of the filters could be
mapped to a precision level lower than FP16 i.e mapping any one filter (of the total 3) to PROMISE
would produce images below PSNR20.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:20 Hashim Sharif et al.

Note that the selected hardware knobs in 8c and 9d vary across DNNs with differing approxima-
tion settings for PROMISE swing levels and GPU precision. This reinforces the need for accuracy-
tuning on a per-DNN basis since each DNN has different error-tolerance characteristics.

0

5

10

15

20

25

30

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 Total

Time Energy

Fig. 10. Speedup and energy reduction over baseline for all six
layers of AlexNet (Loss2%). Conv1 cannot be mapped to PROMISE
and is executed using FP16. It thus observes the smallest ben-
efit and also significantly reduces the overall time and energy
improvement.

AlexNet Layer-wise Analysis. To
gain more insight into the benefits
observed by ApproxHPVM, we per-
form a layer-wise analysis of the
Loss2% AlexNet configuration. Fig-
ure 10 shows the layer-wise break-
down of performance and energy im-
provement for this configuration. The
autotuner identifies that Conv1 can-
not be run on PROMISE because it is
highly error prone and mapping it to
PROMISE results in an unacceptable
accuracy loss. Therefore, Conv1 is
mapped to FP16, which only provides
a 1.3x performance improvement and
a 2.1x energy reduction. For the other
five layers, ApproxHPVM identifies
these as being error-tolerant and maps them to PROMISE. The speedup ranges from 5x (FC1) to
11x (Conv2), and the energy reduction ranges from 5.4x (FC1) to 30x (Conv2) for these five layers.
Compared to the performance improvement, the energy reduction is higher due to the fact that
convolution layers are typically memory bound, and costly memory accesses constitute most of
the total energy in FP32. The high data locality provided by the specialized storage of PROMISE
drastically reduces that cost. Overall, ApproxHPVM achieves a speedup of 4.4x and an energy
reduction of 11.3x for AlexNet with only a 2% loss in accuracy.
Statistical Accuracy Tests. For all benchmarks, we measured the success rate RSuccess of our
configurations by measuring the fraction of program runs where the measured end-to-end metric
(accuracy degradation or PSNR violation rate) satisfies the programmer-specified threshold. For
configurations generated by the autotuner, 94% configurations passed the statistical accuracy test by
achieving Rsuccess > 95% on the target hardware (PROMISE+GPU). This shows that our hardware-
agnostic approach yields configurations which benefit from approximation and yet remain within
the programmer-specified constraint when evaluated on the target hardware platform.

5.2 Hardware-Agnostic vs Hardware-Specific Tuning
To evaluate the effectiveness of our hardware-agnostic autotuning approach, we compare against
hardware-specific autotuning.While hardware-agnostic autotuning provides several benefits includ-
ing portability and facilitating efficient dynamic scheduling, it can potentially lead to sub-optimal
mappings. In the hardware-agnostic autotuning phase, error budgets are allocated to individual
tensor operations without knowledge of the approximation choices offered by a specific hardware
platform. This can potentially waste error budgets when the autotuner allocates an error budget
to an operation that cannot be approximated on the target hardware. To conduct the hardware-
specific autotuning experiment, we use OpenTuner (as in the hardware-agnostic tuner) to directly
search over the set of hardware knobs that maximize performance and energy while satisfying
the end-to-end quality metric. For our target platform, these hardware knobs include FP32, FP16,
and the 7 levels of PROMISE, providing a total of 9 hardware knobs for each operation. For a fair

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 loss1% loss2%

(a) Normalized DNN Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 loss1% loss2%

(b) Normalized DNN Energy Reduction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GEO GSM GEOM GEMO GSME

p30

p20

(c) Normalized Image Benchmark Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GEO GSM GEOM GEMO GSME

p30

p20

(d) Normalized Image Benchmark Energy Reduction

Fig. 11. Speedup and Energy reduction of hardware-agnostic autotuning compared to hardware-specific
autotuning. All bars are normalized to the corresponding best hardware-specific autotuning configuration.

comparison with hardware-agnostic tuning, we use the same number of Autotuner iterations -
1000. For FC-4, LeNet, and the 5 image benchmarks, we found the configuration search space to be
tractable for exhaustive search and hence compare against exhaustive search. The performance
and energy of hardware-agnostic (HA) normalized to hardware-specific (HS) is shown for both
DNN and image processing benchmarks in Figures 11a, 11b, 11c, and 11d.
For the DNN benchmarks, we observe that on average hardware-agnostic tuning is within

10% performance and 15% energy of hardware-specific tuning. For VGG16-10 Loss2, we observe
a significant difference of 32% in performance and 46% in energy. The difference occurs since
hardware-specific tuning is able to map the most expensive convolution layers to PROMISE while
the hardware-agnostic tuner was able to map fewer layers to the accelerator. The particular reason
for the difference is that the hardware-agnostic tuner allocates error budgets to tensor operations
without knowing the approximationmechanisms on the target hardware. For instance, the hardware
tuner would allocate error budgets to tensorRelu and tensorPooling operations unaware that the
PROMISE accelerator does not add error to these operations (since they are executed in the digital
domain). The wasted error budget can sometimes result in missed opportunities for utilizing that
error budget elsewhere. However, as majority of the results show, the difference between hardware
agnostic and hardware-specific tuning is not significant in most cases. Interestingly, for FC-4 and
LeNet, hardware-agnostic is within 5% and 10%, respectively, of the energy reduction achievable by
the optimal configuration (given by the exhaustive search).
ResNet-18 only achieves a small performance improvement of up to 1.1x and energy reduction

of up to 1.2x with hardware-agnostic tuning, and up to 1.5x performance improvement and 1.6x
energy reduction with hardware-specific tuning. As Figure 8c shows, for ResNet-18 most layers

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:22 Hashim Sharif et al.

were found to be less error-tolerant by the autotuner and could not be mapped to PROMISE. Note
that in an attempt to maximize opportunities for approximation, the hardware-agnostic tuner maps
a number of ResNet layers to FP16. However, for certain layers we observe that FP16 provides
slightly worse performance (and energy) compared to FP32, thereby neutralizing any benefits
provided by FP16 computation. We found this to be an anomaly, since in general computations
provide both performance and energy improvements on FP16.

For the image processing benchmarks, we compare against exhaustive search for all 5 benchmarks
since the search space is tractable. Among the 5 different types of filters uses in the benchmarks,
only Gaussian and MotionBlur can be offloaded to PROMISE because of the minimum vector
length (64) imposed by PROMISE. Hence, the other 3 filters, Emboss, Sharpen, and Outline, have
two hardware choices, FP16 and FP32. In 8 of the 10 total experiments (PSNR30 and PSNR20 for
each image processing benchmark), the performance improvement matches that of the optimal
configuration determined by exhaustive search. For energy, 5 of the 10 hardware-agnostic results
match the optimal, while 3 are within 0.03% of the optimal. For GEMO PSNR20 and GSME PSNR20,
we see a significant difference in both performance (48%) and energy (54%) when compared to the
optimal configuration. The large difference is observed because of a single sub-optimal decision
where the hardware-agnostic tuner maps the first Gaussian filter to FP16, whereas the hardware-
specific tuner maps it to PROMISE. The hardware-agnostic tuner is unaware that PROMISE cannot
map small vector sizes to PROMISE and allocates error budget to the other filters (Emboss, Outline,
Sharpen), thereby reducing the error budget that could be allocated to the Gaussian filter. Though
hardware-agnostic tuning is sub-optimal in this specific example, the fact that it can distribute
error budgets independent of the hardware makes it a more flexible choice when considering a
variety of hardware platforms that may have very different characteristics.

Overall, our results show that hardware-agnostic autotuning performs reasonably well com-
pared to hardware-specific autotuning and exhaustive search. We believe that hardware-agnostic
autotuning is more flexible since it allows for shipping code with hardware-independent approx-
imation metrics, which can in turn be used by a wide variety of hardware devices. Shipping
application programs tuned for each unique hardware platform is infeasible in practice. Moreover,
hardware-specific autotuning will be infeasible in scenarios where the hardware tuning takes an
excessively long time, for instance design-space exploration in FPGA synthesis. The proposed
hardware-agnostic approach also enables flexible dynamic scheduling where the target device can
be chosen at runtime given the error tolerance of an operation and the accuracy guarantee provided
by the target compute unit. In scenarios where hardware platform details are known and hardware
tuning is feasible in practice, the ApproxHPVM also facilitates such hardware-specific autotuning.

Non-optimality of hardware-agnostic tuning. The hardware-agnostic accuracy-tuning ap-
proach is suboptimal since error budgets allocated in the tuning phase may not be fully utilized
when mapping to approximation knobs in hardware. For instance, the hardware-agnostic tuner
may allocate an error budget to a tensor operation for which no approximate version is present
on the target hardware platform. More generally, a tensor operation may only be able to use a
fraction of its error budget, leaving the rest unused. In theory, wasted error budgets in one operation
can be reapportioned to other operations that can utilize the error budget. Currently, we don’t
support such error reapportioning because the second (hardware-specific) mapping stage selects
an approximation choice independently for each operation.

Another mode in which hardware-agnostic tuning is sub-optimal is that multiple IR operations
with individual error budgets are merged into a single hardware operation in the back-end code
generator, which requires assigning a single approximation option to all those operations. This
in turn forces conservative choice of approximation that satisfies the error budget of all such
operations. For example, in our hardware mapping phase for the PROMISE accelerator, multiple

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:23

tensor operations are sometimes mapped to a single PROMISE operation. When selecting the
voltage swing for the PROMISE operation, we make the conservative choice of choosing the least
error budget allocated to each of the individual tensor operations. Such conservative choices
waste the error budget for some of the operations. Notice that the hardware-specific autotuner
can be constrained to avoid this problem because it can take into account the actual mapping
of IR operations to hardware operations, while selecting the approximation choices. As part of
future work, we will study techniques for composing error budgets allocated to individual tensor
operations. Analyses for composing error budgets should, in turn, allow for more precise selection
of hardware knobs.

5.3 Autotuning Times

Table 4. Hardware-agnostic (HA) and
Hardware-specific (HS) autotuning
times (in hours).

Benchmark HA HS
FC-4 1.4 5.11
LeNet 4.4 5.9
AlexNet 16.5 16.8

AlexNet v2 17.6 15.2
ResNet-18 13.7 15.3
VGG-16-10 32.1 31
VGG-16-100 20.8 24.4
MobileNet 16.2 11.3

MobileNet-SH 11.4 8.2
GEOM 12.6 5.9
GEMO 8.4 3.8
GSME 11.2 4.9
GEO 7.7 0.3
GSM 10.8 0.7

We built our autotuner by leveraging the interface provided
by the OpenTuner framework [Ansel et al. 2014]. We ran our
autotuning experiments on an NVIDIA V100 GPU with 5120
cores and 16GB HBM2 global memory. Both the cuDNN-based
runtime (for running FP32, FP16) and the PROMISE simula-
tor leverage the parallelism offered by the GPU. For both the
hardware-agnostic (HA) and hardware-specific (HS) tuning
experiments, we use 1000 iterations of the autotuner (search-
ing over 1000 points in the search space). The tuning times
in hours for hardware-agnostic and hardware-specific exper-
iments for each benchmark are included in Table 4. Note that
for FC-4, Lenet-5, and the five image filter benchmarks GEO,
GSM, GEOM, GEMO, GSME, the hardware-specific phase does
a fully exhaustive search since the search space is tractable for
these benchmarks. The HS autotuning times for these bench-
marks include the time for performing the exhaustive search.
The HS tuning times for the image benchmarks are low given
that the search space is small. Since only the Gaussian and
MotionBlur filter could be mapped to PROMISE, the other
filters can only map to 2 hardware choices - FP32 and FP16. For instance, for the GSM (Gaussian-
Sharpen-MotionBlur) filter, HS exhaustive search only needs to search through 9 × 2 × 9 = 162
unique configurations, as opposed to 1000 iterations in the HA tuner. Hence for the image filter
benchmarks, the HS tuning times are lower than in HA tuning. While exhaustive search was
possible in this scenario, for a system with more approximation choices for each operation (more
accelerator knobs, perforation, sampling etc.), such exhaustive search through all combinations
may not be feasible. For the DNNs, the HA and HS times are mostly similar since both autotuner
runs are assigned equal iterations.
5.4 Hardware Sensitivity
To validate the benefits of ApproxHPVM across different hardware characteristics, we study the
impact of pDMA and number of PROMISE banks on performance and energy.
pDMA: In deep learning, GEMM-based convolutions maps convolutionX⊛W into a product of two
matrices PX and PW , known as patch matrices. Using GEMM for convolution is desirable because
GEMM is typically a highly optimized operation, and both NVIDIA’s cuDNN library [Chetlur et al.
2014] and PROMISE perform GEMM-based convolution (Section 3.3). The overhead of GEMM-based
convolution consists of two data layout transformations: “patching” to generate matrices PX and
PW , and “unpatching” to convert the GEMM’s output to the application’s desired format.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:24 Hashim Sharif et al.

0

0.05

0.1

0.15

0.2

0.25

w/ pDMA w/o pDMA w/ pDMA w/o pDMA

Time Energy

Unpatching

Leakage

Compute

Memory

Patching

Quantization

Fig. 12. Normalized execution time and energy for
AlexNet with and without pDMA. Without pDMA,
PROMISE relies on the GPU to perform quantization,
patching, and unpatching; these overheads reduce the
performance and energy improvement over FP32.

In cuDNN, patching and unpatching are
done in on-chip memory to minimize this over-
head [Chetlur et al. 2014]. In PROMISE, we can
either use the pDMA scheme described in Sec-
tion 4.3 or rely on the GPU to perform patching
and unpatching. Similarly, quantization to/from
INT8 can be performed either by pDMA or by
the GPU before/after PROMISE’s execution. In
order to compare these two choices, we imple-
mented CUDA kernels for patching, unpatch-
ing, and quantization, and compared their per-
formance and energy to pDMA. We pipelined
patching/unpatching with PROMISE’s execu-
tion to maximize performance.
Figure 12 shows execution time and energy,

normalized to FP32, for the Loss2% AlexNet con-
figuration with and without pDMA. While pipelining minimizes the time overhead, the entire
energy cost of the GPU kernels is still incurred. Moreover, the increased data movement (the patch
matrix is 121x larger than the input matrix in Conv2) causes both time and energy to increase fur-
ther. Nonetheless, PROMISE without pDMA still achieves a 4.1x speedup and 6.3x energy reduction
compared to FP32. While the benefits are higher with pDMA (4.4x performance and 11.3x energy),
these results show our approach is effective regardless of the method used.

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

30

32 64 128 256 512 1024

%
 o

f 
So

C
A

re
a

Ti
m

e
 a

n
d

 E
n

e
rg

y 
Im

p
ro

ve
m

e
n

t

Number of Banks

Time Energy Area

Fig. 13. Speedup and energy reduction over FP32, and
area for FC4 vs the number of PROMISE banks. The
SoC contains 4B transistors.

#Banks: We performed a scaling study of the
number of PROMISE banks to establish the suit-
ability of a 256 bank configuration. Figure 13
shows the execution time and energy of FC4 as
the number of banks is increased, as well as the
area overhead associated with the increasing
number of banks. Using 256 banks, PROMISE
strikes a balance between performance, energy,
and area – it only consumes 10% of a 4B tran-
sistor SoC’s area and still significantly outper-
forms FP32.

6 RELATEDWORK
Software Approximations.Many studies have introduced novel software techniques for approxi-
mation that reduce execution time and/or energy. The transformations include task skipping [Meng
et al. 2009, 2010; Rinard 2006], loop perforation [Misailovic et al. 2011, 2010; Sidiroglou-Douskos
et al. 2011], approximate function substitution [Ansel et al. 2011; Baek and Chilimbi 2010; Samadi
et al. 2014; Zhu et al. 2012], dynamic knobs [Hoffmann et al. 2011] (dynamically changing func-
tion version), reduction sampling [Goiri et al. 2015; Samadi et al. 2014; Zhu et al. 2012], tuning
floating-point operations [Rubio-González et al. 2013; Schkufza et al. 2014], and approximate paral-
lelization [Campanoni et al. 2015; Misailovic et al. 2013, 2012; Samadi et al. 2014]. These techniques
have been shown to work well across a variety of application domains resilient to small errors. We
envision that ApproxHPVM will provide a general framework for expressing and developing these
optimizations, leveraging the ability of the underlying IR to explicitly specify parallelism and data

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



ApproxHPVM 186:25

dependency. In conjunction, our IR allows a developer to explicitly specify approximation metrics
and the error tolerance allowing the compiler to apply more flexible approximations.
Approximation-Aware Languages. EnerJ [Sampson et al. 2011] presents a type system that
separates approximate and precise data. The developer needs to annotate each variable in the
source code as precise or approximate before the type system can ensure that the approximate data
is never assigned to the precise variable. More recently, Decaf [Boston et al. 2015] performs type
inference to reduce the developer annotation effort.
Rely [Carbin et al. 2013] and Chisel [Misailovic et al. 2014] introduced the idea of quantifiable

reliability and absolute error at the program level. They define function-level specifications that
express the maximum probability with which the function can produce an inaccurate result. These
specifications separate the optimization within the function from the uses of the function: the
code that calls the function can rely on the specification, while the body of the function can be
modified separately and Rely and Chisel can statically verify that those implementations satisfy
the specification.
ApproxHPVM introduces the concept of quantifiable reliability at the IR level. Incorporating

approximation metrics at the IR level provides a more portable alternative, since the metrics are
preserved even after compiling the program. Effectively, the approximation becomes a first-class
citizen in the compiler workflow, which is able to leverage the interaction of the accuracy-aware
IR with various front-end languages and hardware-specific features, especially in heterogeneous
systems. We also adopted and generalized Chisel’s sensitivity profiling based on error-injection to
infer the acceptable thresholds for a wider range of specifications for tensor operations.
Systems forAutomatedAccuracyTuning.The Petabricks programming language automatically
tunes the program to select among multiple user-provided versions of the algorithm with varying
accuracy and performance characteristics [Ansel et al. 2009, 2011; Ding et al. 2015]. Its auto-
tuner uses heuristic algorithm based on genetic programming to search among alternative program
implementations. OpenTuner [Ansel et al. 2014] extends these ideas to provide a general autotuning
framework for programs written in conventional languages.

Green [Baek and Chilimbi 2010] presents a combined offline and run-time accuracy tuning mech-
anism. Its offline heuristic algorithm selects the parameters of the approximation opportunities
exposed by the developer. Its run-time system infrequently re-executes the exact sub-computations,
compares it to the approximate one and adjusts the approximation accordingly. Loop perfora-
tion [Misailovic et al. 2010; Sidiroglou-Douskos et al. 2011] presents an off-line auto-tuner, which
automatically searches for the loops to approximate. Its search consists of two phases: 1) sensitivity
testing, which checks whether the perforated loop will crash the program, slow it down, cause
memory leaks, or produce illegal outputs, and 2) accuracy tuning, which finds the loops with
maximum speedup for every end-to-end accuracy loss bound. More recently, Accept [Sampson et al.
2015] builds on this strategy, by including the developer annotations and type system from EnerJ to
constrain the search space and automatically apply several approximate transformations, including
offloading to approximate hardware (using the approach from Esmaeilzadeh et al. [2012]).
Unlike ApproxHPVM, these previous approaches consider only end-to-end accuracy of the

computation and do not decouple hardware-independent from hardware-dependent tuning. Also
these approaches (except Accept) have been used only for optimizing CPU code. In contrast,
decoupling the tuning and IR-level accuracy specifications enable us to achieve portable approximate
object code, and provide natural abstractions for future uses like dynamic scheduling and hardware-
level design space exploration.

Approximation techniques for deep neural networks, e.g., fixed point quantization of pretrained
neural networks [Lin et al. 2016] or layer-grained analytical models for bit-widths of weights

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.



186:26 Hashim Sharif et al.

and activations [Sakr et al. 2017], require domain-specific algorithmic knowledge. In contrast,
our accuracy-tuning does not require any domain-specific knowledge, instead using an efficient
search-based approach for determining the accuracy requirements for different operations.
Approximate Hardware Accelerators. Recently there have been many proposals for machine
learning accelerators [Chen et al. 2014, 2016; Du et al. 2015; Esmaeilzadeh et al. 2012; Liu et al. 2016;
St. Amant et al. 2014], some of which explicitly incorporate approximations. Although we have
chosen PROMISE and GPUs as the accelerators in our evaluations, our framework is more broadly
applicable to the wide range of emerging approximate accelerator platforms.
Compiler-based Systems for Machine Learning. TVM [Chen et al. 2018] proposes a compiler
framework that supports the compilation and optimization of machine learning workloads on
multiple hardware targets. Similarly, Glow [Rotem et al. 2018] and XLA [The XLA Team 2019]
are also ML-based compiler frameworks that leverage DNN-specific operations in the IR design,
thereby facilitating domain-specific optimizations. As ApproxHPVM also leverages domain-specific
information with the inclusion of high-level tensor intrinsics, it also facilitates such domain-specific
optimizations. None of these systems include approximation metrics in the IR design and hence do
not provide the portability and flexibility offered by ApproxHPVM. While these existing systems
provide support for precision-tuning to FP16 and INT8, ApproxHPVM provides more extensive
support for approximation since it also allows for mapping computations to accelerators that
provide performance-energy-accuracy trade-offs. Moreover, ApproxHPVM enables approximation
mechanisms that are not limited to the machine learning domain.

7 CONCLUSION
In this paper, we introduced ApproxHPVM, a compiler IR that introduces hardware-agnostic accu-
racy metrics that are decoupled from hardware-specific information. We augment ApproxHPVM
with an accuracy-tuning analysis that lowers the accuracy requirements of IR operations given
an end-to-end quality metric, while the hardware scheduling phase uses the extracted constraints
to map to different approximation choices. Our results show that ApproxHPVM provides promis-
ing results on a heterogeneous target platform with multiple hardware compute units. Across 14
benchmarks in the deep learning and image processing domains, we observe performance speedups
ranging from 1-9x and energy reductions ranging from 1.1-11.3x. As ApproxHPVM does not include
hardware-specific information at the IR level, we envision ApproxHPVM to be extensible to a wide
range of approximate computing hardware. Moreover, we believe that the hardware-independent
accuracy constraints can also be satisfied by software-only techniques for approximation.

ACKNOWLEDGEMENTS
This work was sponsored by the DARPA Domain-specific Systems on Chip (DSSOC) program,
part of the Electronics Resurgence Initiative (ERI), under Contract# HR0011-18-C-0122. It was
also supported in part by the National Science Foundation Grant CNS 15-64274, the Applications
Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA,
and the University of Illinois.

REFERENCES
Jason Ansel, Cy Chan, Yee LokWong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks:

A Language and Compiler for Algorithmic Choice. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’09). ACM, New York, NY, USA, 38–49. https://doi.org/10.1145/1542476.
1542481

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and
Saman Amarasinghe. 2014. OpenTuner: An Extensible Framework for Program Autotuning. In Proceedings of the 23rd

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.

https://doi.org/10.1145/1542476.1542481
https://doi.org/10.1145/1542476.1542481


ApproxHPVM 186:27

International Conference on Parallel Architectures and Compilation (PACT ’14). ACM, New York, NY, USA, 303–316.
https://doi.org/10.1145/2628071.2628092

Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Amarasinghe. 2011. Language and
Compiler Support for Auto-tuning Variable-accuracy Algorithms. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO ’11). IEEE Computer Society, Washington, DC, USA, 85–96.
http://dl.acm.org/citation.cfm?id=2190025.2190056

Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Framework for Supporting Energy-conscious Programming Using
Controlled Approximation. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’10). ACM, New York, NY, USA, 198–209. https://doi.org/10.1145/1806596.1806620

Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. 2015. Probability type inference for flexible approximate
programming. In OOPSLA. ACM, 470–487.

Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks. 2015. HELIX-UP: Relaxing Program Semantics to
Unleash Parallelization. In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO ’15). IEEE Computer Society, Washington, DC, USA, 235–245. http://dl.acm.org/citation.cfm?id=
2738600.2738630

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying Quantitative Reliability for Programs That Execute on
Unreliable Hardware. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’13). ACM, New York, NY, USA, 33–52. https://doi.org/10.1145/2509136.
2509546

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, LeyuanWang, Yuwei
Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-end Optimizing Compiler
for Deep Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI’18). USENIX Association, Berkeley, CA, USA, 579–594. http://dl.acm.org/citation.cfm?id=3291168.3291211

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and
Olivier Temam. 2014. DaDianNao: A Machine-Learning Supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-47). IEEE Computer Society, Washington, DC, USA, 609–622.
https://doi.org/10.1109/MICRO.2014.58

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), Vol. 44. IEEE, 367–379. https://doi.org/10.1109/ISCA.2016.40

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer.
2014. cuDNN: Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014). arXiv:1410.0759 http://arxiv.org/abs/
1410.0759

Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May O’Reilly, and Saman Amarasinghe. 2015. Autotun-
ing Algorithmic Choice for Input Sensitivity. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’15). ACM, New York, NY, USA, 379–390. https://doi.org/10.1145/2737924.2737969

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam.
2015. ShiDianNao: Shifting Vision Processing Closer to the Sensor. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture (ISCA ’15). ACM, New York, NY, USA, 92–104. https://doi.org/10.1145/2749469.
2750389

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural Acceleration for General-Purpose Ap-
proximate Programs. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-45). IEEE Computer Society, Washington, DC, USA, 449–460. https://doi.org/10.1109/MICRO.2012.48

Li Fei-Fei, Rob Fergus, and Pietro Perona. 2004. Learning Generative Visual Models from Few Training Examples: An
Incremental Bayesian Approach Tested on 101 Object Categories. In 2004 Conference on Computer Vision and Pattern
Recognition Workshop. 178–178. https://doi.org/10.1109/CVPR.2004.383

Dustin Franklin. 2018. NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge. NVIDIA Developer Blog. (2018).
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge

Yonatan Geifman. 2019. VGG16 models for CIFAR-10 and CIFAR-100 using Keras. https://github.com/geifmany/cifar-vgg.
(2019).

Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. 2015. Approxhadoop: Bringing approximations to
mapreduce frameworks. In ASPLOS. ACM, 383–397.

S. K. Gonugondla, M. Kang, and N. R. Shanbhag. 2018. A Variation-Tolerant In-Memory Machine Learning Classifier via On-
Chip Training. IEEE Journal of Solid-State Circuits 53, 11 (Nov 2018), 3163–3173. https://doi.org/10.1109/JSSC.2018.2867275

Antonio Gulli and Sujit Pal. 2017. Deep Learning with Keras. Packt Publishing.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.

https://doi.org/10.1145/2628071.2628092
http://dl.acm.org/citation.cfm?id=2190025.2190056
https://doi.org/10.1145/1806596.1806620
http://dl.acm.org/citation.cfm?id=2738600.2738630
http://dl.acm.org/citation.cfm?id=2738600.2738630
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1145/2509136.2509546
http://dl.acm.org/citation.cfm?id=3291168.3291211
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2016.40
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.1145/2737924.2737969
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1109/MICRO.2012.48
https://doi.org/10.1109/CVPR.2004.383
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge
https://github.com/geifmany/cifar-vgg
https://doi.org/10.1109/JSSC.2018.2867275
https://doi.org/10.1109/CVPR.2016.90


186:28 Hashim Sharif et al.

Nhut-Minh Ho andWeng-FaiWong. 2017. Exploiting half precision arithmetic in Nvidia GPUs. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2017.8091072

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin Rinard. 2011. Dynamic
Knobs for Responsive Power-aware Computing. In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA, 199–212. https:
//doi.org/10.1145/1950365.1950390

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

D. Anoushe Jamshidi, Mehrzad Samadi, and Scott Mahlke. 2014. D2MA: Accelerating Coarse-grained Data Transfer for
GPUs. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation (PACT ’14). ACM, New
York, NY, USA, 431–442. https://doi.org/10.1145/2628071.2628072

Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huzaifa, Maria Kotsifakou, Prakalp Srivastava,
Sarita V. Adve, and Vikram S. Adve. 2015. Stash: Have Your Scratchpad and Cache It Too. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture (ISCA ’15). ACM, New York, NY, USA, 707–719. https:
//doi.org/10.1145/2749469.2750374

Maria Kotsifakou, Prakalp Srivastava, Matthew D. Sinclair, Rakesh Komuravelli, Vikram Adve, and Sarita Adve. 2018. HPVM:
Heterogeneous Parallel Virtual Machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’18). ACM, New York, NY, USA, 68–80. https://doi.org/10.1145/3178487.3178493

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images. Technical Report.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. 2012. ImageNet Classification with Deep Convolutional Neural

Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS
’12). Curran Associates Inc., USA, 1097–1105. http://dl.acm.org/citation.cfm?id=2999134.2999257

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.
In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA. http://dl.acm.org/citation.cfm?id=977395.977673

Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne Hubbard, and Lawrence D.
Jackel. 1989. Handwritten Digit Recognition with a Back-propagation Network. In Proceedings of the 2nd International
Conference on Neural Information Processing Systems (NIPS ’89). MIT Press, Cambridge, MA, USA, 396–404. http:
//dl.acm.org/citation.cfm?id=2969830.2969879

Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. 1998. The MNIST database of handwritten digits. (1998).
http://yann.lecun.com/exdb/mnist

Xiangjun Li and Jianfei Cai. 2007. Robust Transmission of JPEG2000 Encoded Images Over Packet Loss Channels. In
Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007, July 2-5, 2007, Beijing, China.
947–950.

Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. 2016. Fixed Point Quantization of Deep Convolutional
Networks. In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume
48 (ICML’16). JMLR.org, 2849–2858. http://dl.acm.org/citation.cfm?id=3045390.3045690

Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji Chen, and Tianshi Chen. 2016. Cambricon: An
Instruction Set Architecture for Neural Networks. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 393–405. https://doi.org/10.1109/ISCA.2016.42

Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan. 2009. Best-Effort Parallel Execution Framework for Recognition
and Mining Applications. In Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS ’09). IEEE Computer Society, Washington, DC, USA, 1–12. https://doi.org/10.1109/IPDPS.2009.5160991

Jiayuan Meng, Anand Raghunathan, Srimat Chakradhar, and Surendra Byna. 2010. Exploiting the forgiving nature of
applications for scalable parallel execution. In 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS
’10). 1–12. https://doi.org/10.1109/IPDPS.2010.5470469

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David García, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. https://openreview.net/forum?id=r1gs9JgRZ

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and Accuracy-
aware Optimization of Approximate Computational Kernels. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications (OOPSLA ’14). ACM, New York, NY, USA, 309–328.
https://doi.org/10.1145/2660193.2660231

Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing Sequential Programs with Statistical Accuracy
Tests. ACM Transactions Embedded Computing Systems (TECS) 12, Article 88 (May 2013), 26 pages. Issue 2s. https:

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.

https://doi.org/10.1109/HPEC.2017.8091072
https://doi.org/10.1145/1950365.1950390
https://doi.org/10.1145/1950365.1950390
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1145/2628071.2628072
https://doi.org/10.1145/2749469.2750374
https://doi.org/10.1145/2749469.2750374
https://doi.org/10.1145/3178487.3178493
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=2969830.2969879
http://dl.acm.org/citation.cfm?id=2969830.2969879
http://yann.lecun.com/exdb/mnist
http://dl.acm.org/citation.cfm?id=3045390.3045690
https://doi.org/10.1109/ISCA.2016.42
https://doi.org/10.1109/IPDPS.2009.5160991
https://doi.org/10.1109/IPDPS.2010.5470469
https://openreview.net/forum?id=r1gs9JgRZ
https://doi.org/10.1145/2660193.2660231
https://doi.org/10.1145/2465787.2465790
https://doi.org/10.1145/2465787.2465790


ApproxHPVM 186:29

//doi.org/10.1145/2465787.2465790
Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. 2011. Probabilistically Accurate Program Transformations. In

Proceedings of the 18th International Conference on Static Analysis (SAS’11). Springer-Verlag, Berlin, Heidelberg, 316–333.
http://dl.acm.org/citation.cfm?id=2041552.2041576

Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. 2010. Quality of Service Profiling. In Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA,
25–34. https://doi.org/10.1145/1806799.1806808

Sasa Misailovic, Stelios Sidiroglou, and Martin C. Rinard. 2012. Dancing with Uncertainty. In Proceedings of the 2012 ACM
Workshop on Relaxing Synchronization for Multicore and Manycore Scalability (RACES ’12). ACM, New York, NY, USA,
51–60. https://doi.org/10.1145/2414729.2414738

NVIDIA. 2010. PTX: Parallel thread execution ISA version 2.3. NVIDIA COMPUTE Programmer’s Manual 3 (2010). http:
//developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf

NVIDIA. 2018. NVIDIA Jetson TX2 Developer Kit. (2018). https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-tx2

NVIDIA Developer Forums. 2018. Power Monitoring on Jetson TX2. (2018). https://devtalk.nvidia.com/default/topic/
1000830/jetson-tx2/jetson-tx2-ina226-power-monitor-with-i2c-interface

Martin Rinard. 2006. Probabilistic Accuracy Bounds for Fault-tolerant Computations That Discard Tasks. In Proceedings
of the 20th Annual International Conference on Supercomputing (ICS ’06). ACM, New York, NY, USA, 324–334. https:
//doi.org/10.1145/1183401.1183447

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James Hegeman, Roman Levenstein, Bert
Maher, Nadathur Satish, Jakob Olesen, Jongsoo Park, Artem Rakhov, andMisha Smelyanskiy. 2018. Glow: Graph Lowering
Compiler Techniques for Neural Networks. CoRR abs/1805.00907 (2018). arXiv:1805.00907 http://arxiv.org/abs/1805.00907

Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan, Koushik Sen, David H
Bailey, Costin Iancu, and David Hough. 2013. Precimonious: Tuning assistant for floating-point precision. In SC ’13:
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. 1–12.
https://doi.org/10.1145/2503210.2503296

Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. 2017. Analytical Guarantees on Numerical Precision of Deep Neural
Networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (ICML ’17). 3007–3016.
http://dl.acm.org/citation.cfm?id=3305890.3305992

Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. 2014. Paraprox: Pattern-based Approximation
for Data Parallel Applications. In Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’14). ACM, NewYork, NY, USA, 35–50. https://doi.org/10.1145/2541940.2541948

Adrian Sampson, Andre Baixo, Benjamin Ransford, Thierry Moreau, Joshua Yip, Luis Ceze, and Mark Oskin. 2015. ACCEPT:
A Programmer-Guided Compiler Framework for Practical Approximate Computing. In U. Washington, Tech. Rep. UW-CSE-
15-01-01. https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011. EnerJ:
Approximate Data Types for Safe and General Low-power Computation. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11). ACM, New York, NY, USA, 164–174.
https://doi.org/10.1145/1993498.1993518

Ben Sander. 2013. HSAIL: Portable compiler IR for HSA.. In Hot Chips Symposium 2013. 1–32.
Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic Optimization of Floating-point Programs with Tunable

Precision. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 53–64. https://doi.org/10.1145/2594291.2594302

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing Performance vs. Accuracy
Trade-offs with Loop Perforation. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 124–134. https://doi.org/10.1145/
2025113.2025133

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. CoRR
abs/1409.1556 (2014). arXiv:1409.1556 http://arxiv.org/abs/1409.1556

Prakalp Srivastava, Mingu Kang, Sujan K. Gonugondla, Sungmin Lim, Jungwook Choi, Vikram Adve, Nam Sung Kim, and
Naresh Shanbhag. 2018. PROMISE: An End-to-end Design of a Programmable Mixed-signal Accelerator for Machine-
learning Algorithms. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA ’18).
IEEE Press, Piscataway, NJ, USA, 43–56. https://doi.org/10.1109/ISCA.2018.00015

Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and
Doug Burger. 2014. General-purpose Code Acceleration with Limited-precision Analog Computation. In Proceeding of
the 41st Annual International Symposium on Computer Architecture (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 505–516.
http://dl.acm.org/citation.cfm?id=2665671.2665746

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.

https://doi.org/10.1145/2465787.2465790
https://doi.org/10.1145/2465787.2465790
http://dl.acm.org/citation.cfm?id=2041552.2041576
https://doi.org/10.1145/1806799.1806808
https://doi.org/10.1145/2414729.2414738
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx_isa_2.3.pdf
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2
https://devtalk.nvidia.com/default/topic/1000830/jetson-tx2/jetson-tx2-ina226-power-monitor-with-i2c-interface
https://devtalk.nvidia.com/default/topic/1000830/jetson-tx2/jetson-tx2-ina226-power-monitor-with-i2c-interface
https://doi.org/10.1145/1183401.1183447
https://doi.org/10.1145/1183401.1183447
http://arxiv.org/abs/1805.00907
http://arxiv.org/abs/1805.00907
https://doi.org/10.1145/2503210.2503296
http://dl.acm.org/citation.cfm?id=3305890.3305992
https://doi.org/10.1145/2541940.2541948
https://dada.cs.washington.edu/research/tr/2015/01/UW-CSE-15-01-01.pdf
https://doi.org/10.1145/1993498.1993518
https://doi.org/10.1145/2594291.2594302
https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1145/2025113.2025133
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ISCA.2018.00015
http://dl.acm.org/citation.cfm?id=2665671.2665746


186:30 Hashim Sharif et al.

Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova, Lara Dolecek, Andreas Gerstlauer, Ghayoor Gillani,
Djordje Jevdjic, Thierry Moreau, Mattia Cacciotti, Alexandros Daglis, Natalie D. Enright Jerger, Babak Falsafi, Sasa
Misailovic, Adrian Sampson, and Damien Zufferey. 2018. Exploiting Errors for Efficiency: A Survey from Circuits to
Algorithms. CoRR abs/1809.05859 (2018). arXiv:1809.05859 http://arxiv.org/abs/1809.05859

The XLA Team. 2019. XLA: Domain-specific compiler for linear algebra that optimizes TensorFlow computations. https:
//github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/g3doc/overview.md. (2019).

N. Thomos, N. V. Boulgouris, and M. G. Strintzis. 2006. Optimized Transmission of JPEG2000 Streams Over Wireless
Channels. IEEE Transactions on Image Processing 15, 1 (January 2006).

Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic, and Saurabh Bagchi. 2018. VideoChef: Efficient
Approximation for Streaming Video Processing Pipelines. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 43–56. https://www.usenix.org/conference/atc18/presentation/xu-ran

Wei Yang. 2019. Classification on CIFAR-10/100 and ImageNet with PyTorch. https://github.com/bearpaw/pytorch-
classification/blob/master/models/cifar/alexnet.py. (2019).

Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard. 2012. Randomized Accuracy-aware Program
Transformations for Efficient Approximate Computations. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’12). ACM, New York, NY, USA, 441–454. https://doi.org/10.
1145/2103656.2103710

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 186. Publication date: October 2019.

http://arxiv.org/abs/1809.05859
http://arxiv.org/abs/1809.05859
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/g3doc/overview.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/g3doc/overview.md
https://www.usenix.org/conference/atc18/presentation/xu-ran
https://github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py
https://github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py
https://doi.org/10.1145/2103656.2103710
https://doi.org/10.1145/2103656.2103710

	Abstract
	1 Introduction
	2 ApproxHPVM Internal Representation and System Workflow
	2.1 Background: HPVM dataflow graph
	2.2 Tensor operations in ApproxHPVM
	2.3 Approximation Metrics in the IR
	2.4 Keras Frontend

	3 Accuracy-aware Mapping and Optimization
	3.1 Hardware-Agnostic Accuracy Tuning
	3.2 Accuracy-Aware Scheduling
	3.3 Code Generation

	4 Methodology
	4.1 Platform
	4.2 Functional Experiments
	4.3 Timing Experiments
	4.4 Benchmarks
	4.5 Quality Metrics

	5 Evaluation
	5.1 Performance and Energy Evaluation
	5.2 Hardware-Agnostic vs Hardware-Specific Tuning
	5.3 Autotuning Times
	5.4 Hardware Sensitivity

	6 Related Work
	7 Conclusion
	References

